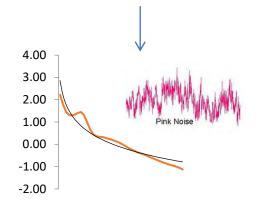
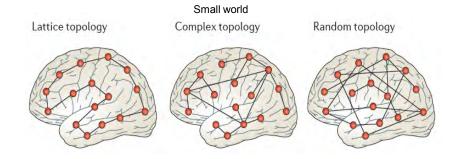


Neuromodulation & Psychedelics

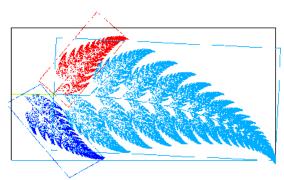

Dirk De Ridder


Brain = complex adaptive system

Complex adaptive systems (CAS)

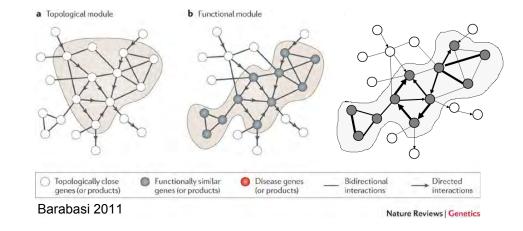
Arise when 2 conditions are fulfilled (Amaral 2004)

- 1. Structure has small world topology _____
- 2. Presence of noise

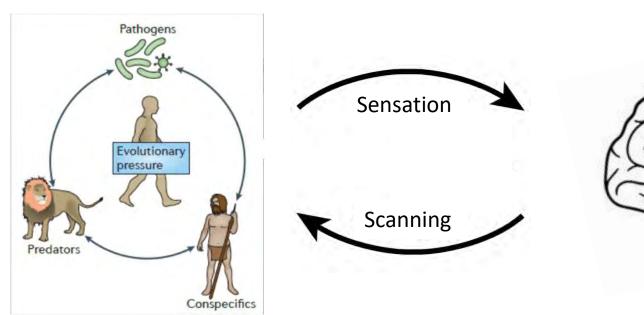


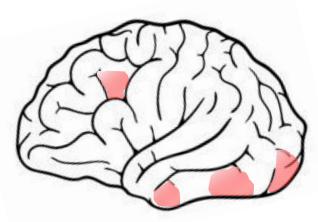
Brain = complex adaptive system

Complex adaptive systems (CAS)

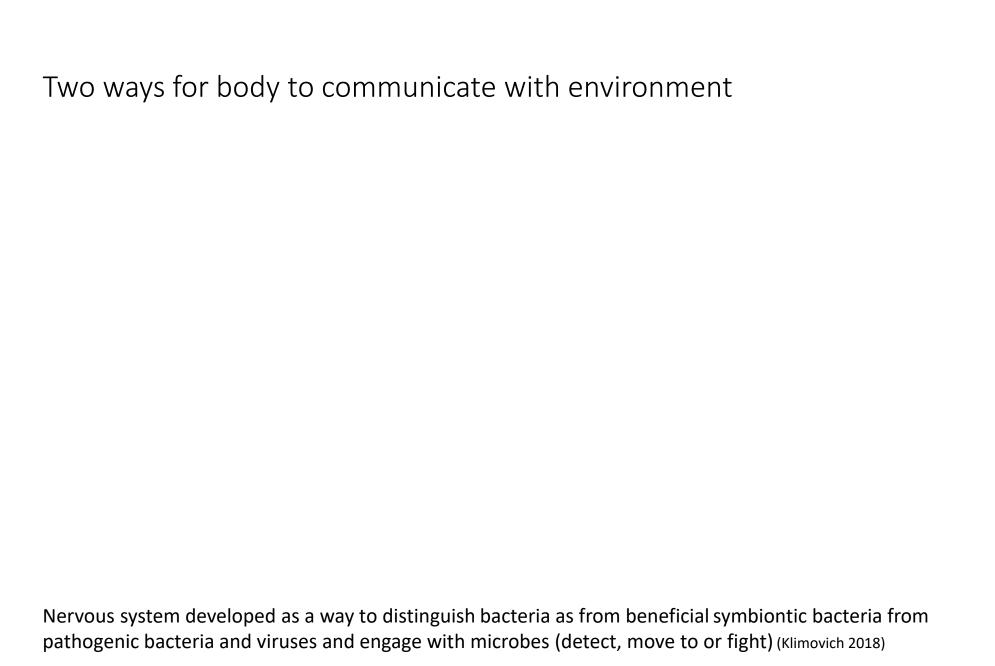

are characterized by

- 1. Complex : containing many parts in intricate arrangement
- 2. Adaptive: capacity to change and learn from experience giving them resilience in the face of perturbation (homeostasis)
- 3. Self-organization: complexity of the system increases without external organizer
- 4. Self-similarity: the whole has the same shape as one or more of the parts (fractal)
- **5. Emergence**: whole is more than sum of components, new property



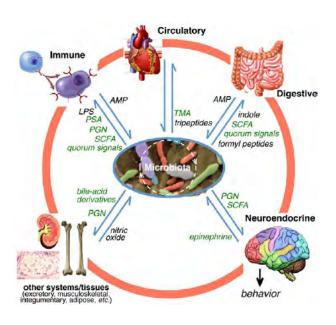

Each pattern has emergent characteristic

Code = activity + connectivity



Information in Environment

Information in Brain


Microbiome and self

Self

Traditional view

Defining selfhood immunity microbes

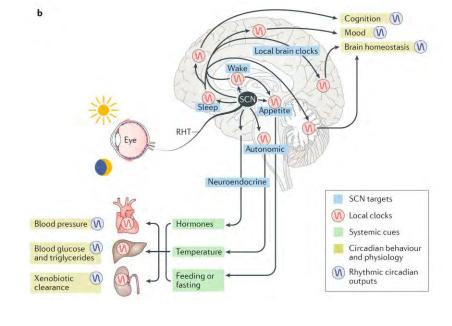
37% homologous genes with single celled eukaryotes

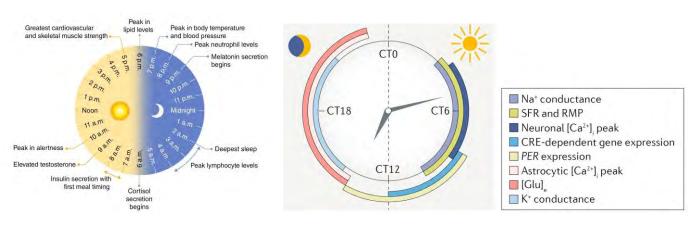
Brain and immune system are energy expensive

Selfish brain (Straub 2010)

Brain consumes 25% of total energy

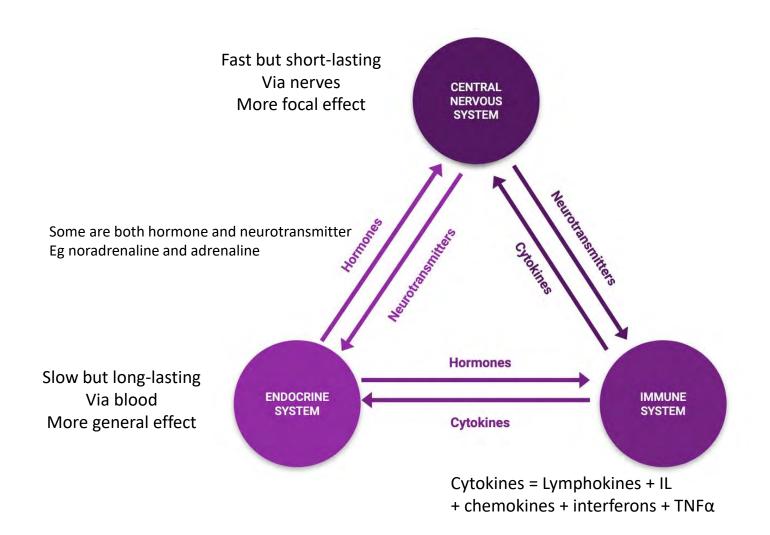
Immune system 20%

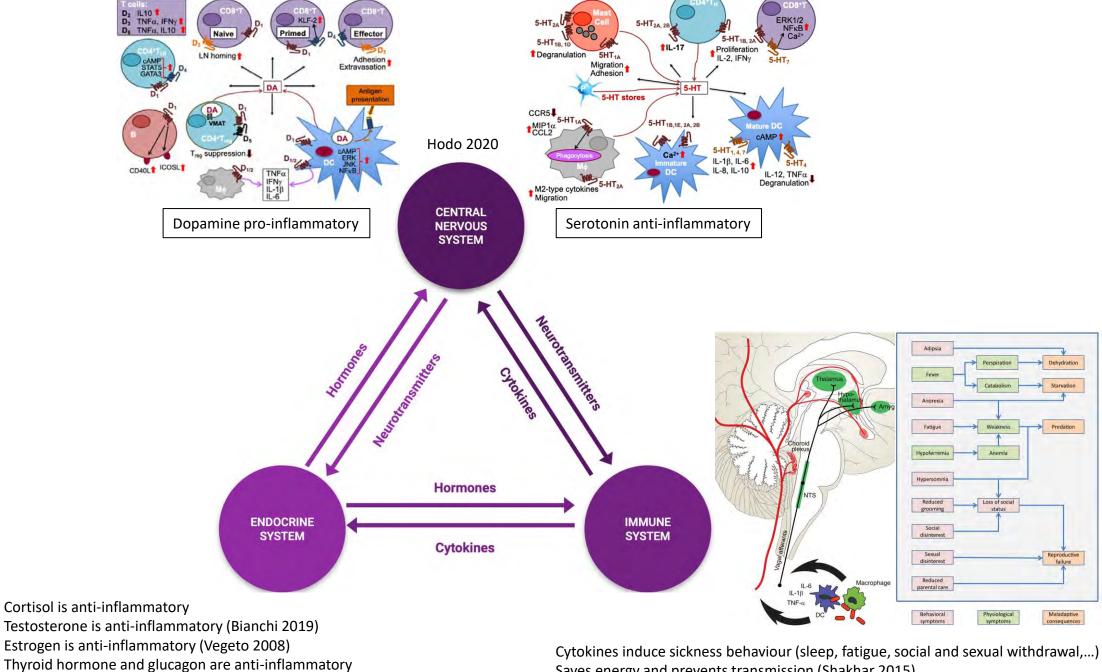

Heart and lungs 25%


Internal organs 30%

+ Muscles: extra 20%

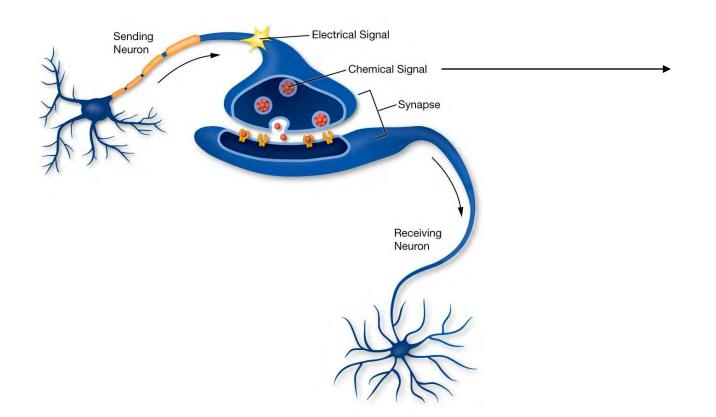
 $^{\sim}50\%$ of mammalian genes are expressed with 24-hour rhythms (Zhang 2014, Mure 2018)

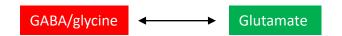

During day nervous system and metabolism are active, at night immune system, repair and growth (Masri 2018, Hastings 2018, Li 2022)

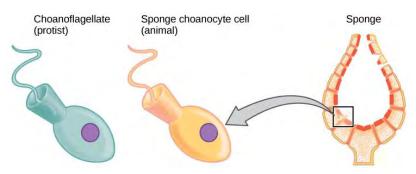


Masri 2018 Hastings 2018

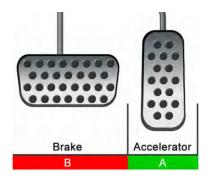
Signal molecules

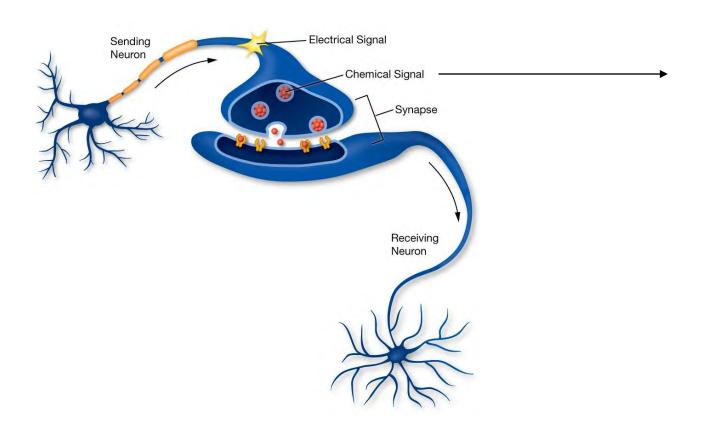


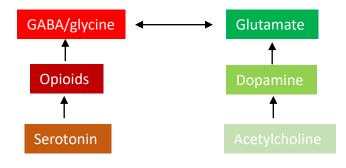

(Garcia-Leme 1993)

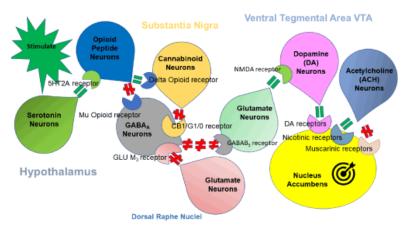

Saves energy and prevents transmission (Shakhar 2015)

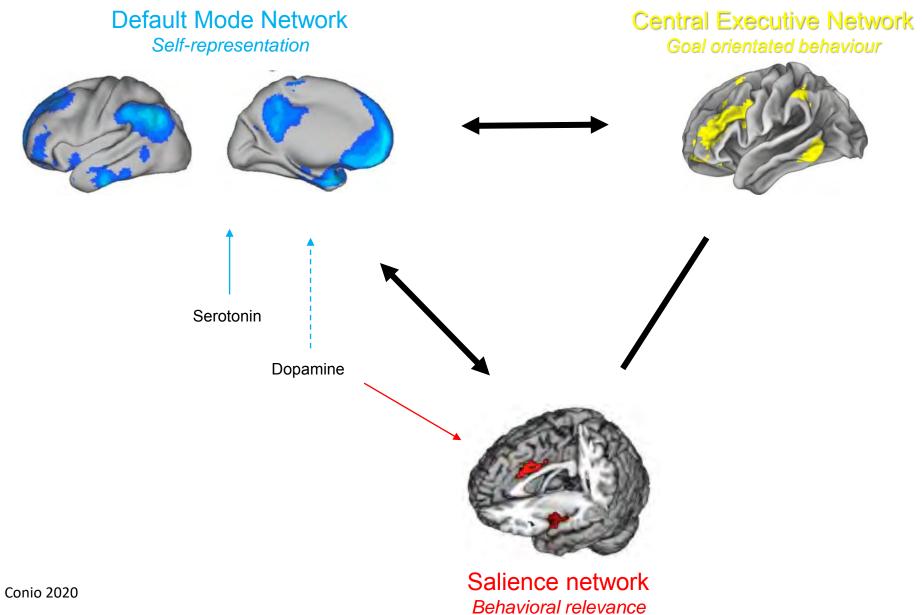
Brains are electrical and chemical

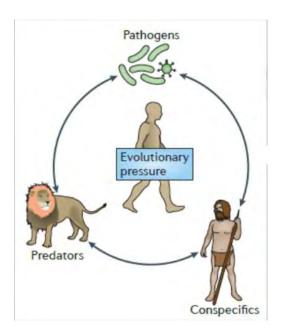


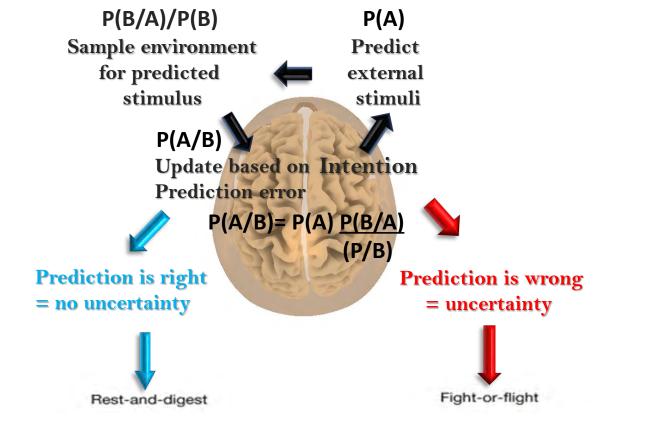


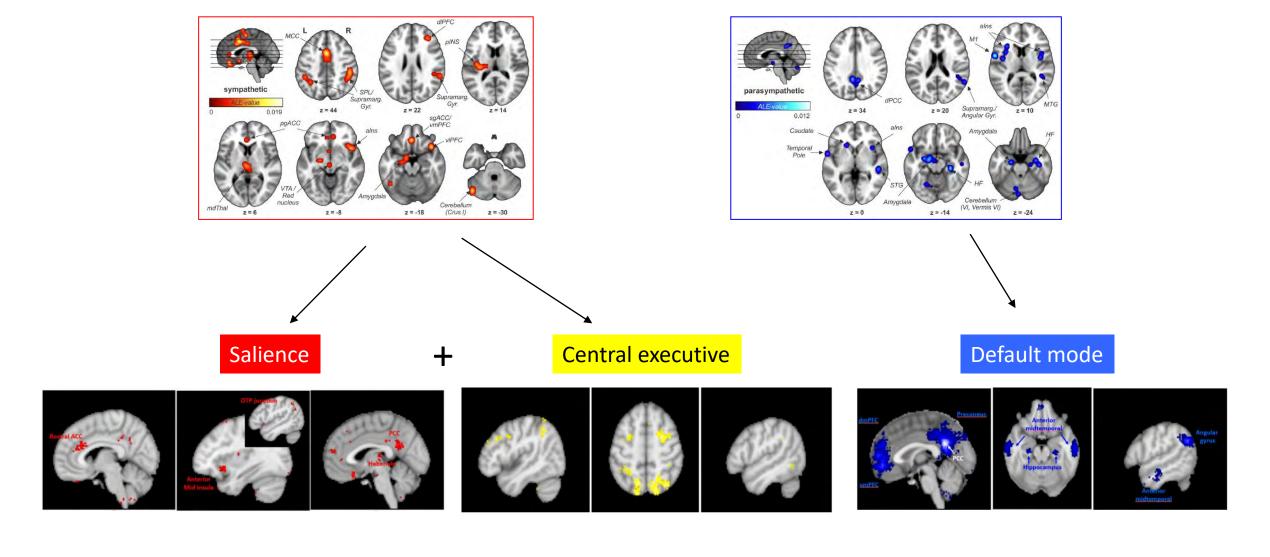



Choanoflagellates use glutamate and GABA as signal molecules Same signal molecules later repurposed as neurotransmitters


Brains are electrical and chemical



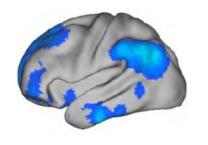


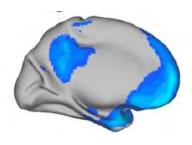

Brain networks for interaction of self with environment

P(A/B) = P(A) P(B/A)

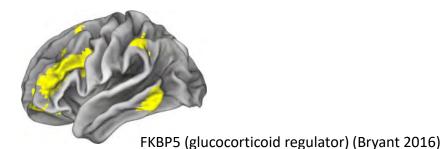
(P/B)

Evolution of ANS




Self → mind wandering

Environment → Resilience


Default Mode Network Self-representation

Goal orientated behaviour

FKBP5 (Zhang 2020) BDNF (Thomason 2009)

FKBP5 (glucocorticoid regulator) (Zhang 2020) APOE-ε4 (Foo 2020)

BDNF (Schweiger 2019, Thomason 2009)

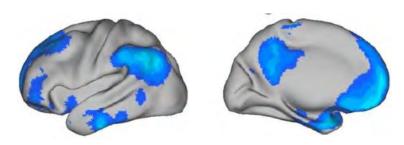
COMT (Dang 2013)

HTR2A, HTR1B (Miller 2016)

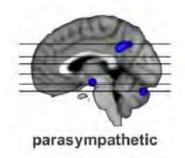
HTR1A (Zheng 2017)

OXTR (Wang 2016)
BDNF (Thomason 2009)
COMT (Meyer 2016)

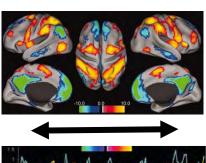
HTR1A (Zheng 2017)

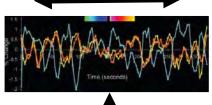

Salience network

Behavioral relevance


Uncertainty → arousal/stress

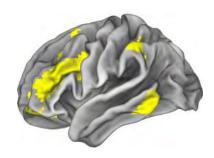
Default Mode Network

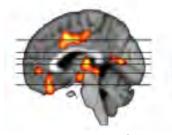

Self-representation



Rest, digest, restore

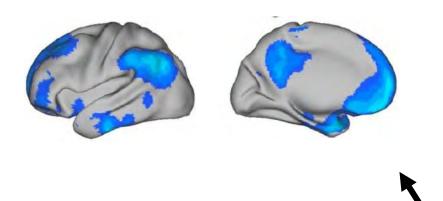
Fox 2005

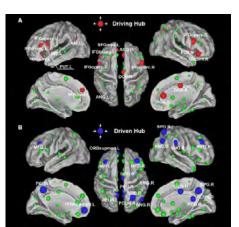



Salience network

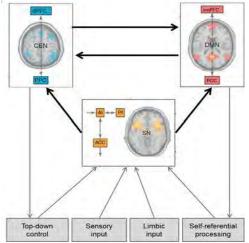
Behavioral relevance

Central Executive Network Goal orientated interaction with environment


Urge for action


sympathetic

Default Mode Network Self-representation



Salience network drives DMN Yan 2011

Salience network switches between DMN and CEN Menon 2010

Salience network

Behavioral relevance

Networks and network interactions change Adaptive and maladaptive

Stress = uncertainty

Acute stress (adaptive)

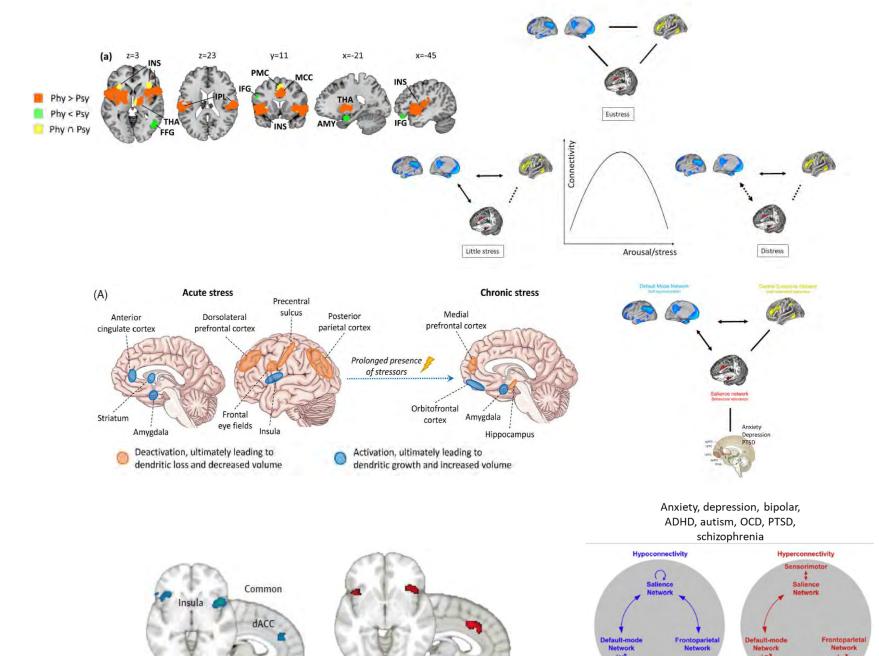
Activity: increased in SN

Connectivity: Δ

Chronic stress (maladaptive)

Activity

Connectivity

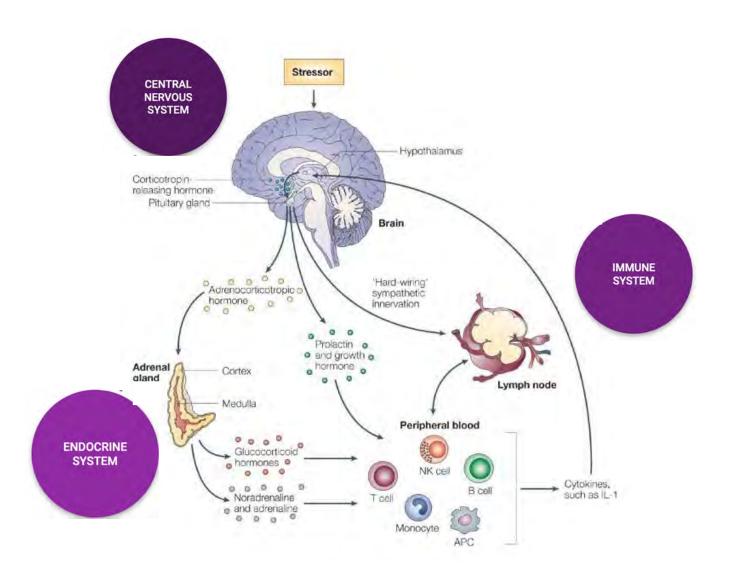

Inflammatory

Exhaustion = mental disorder

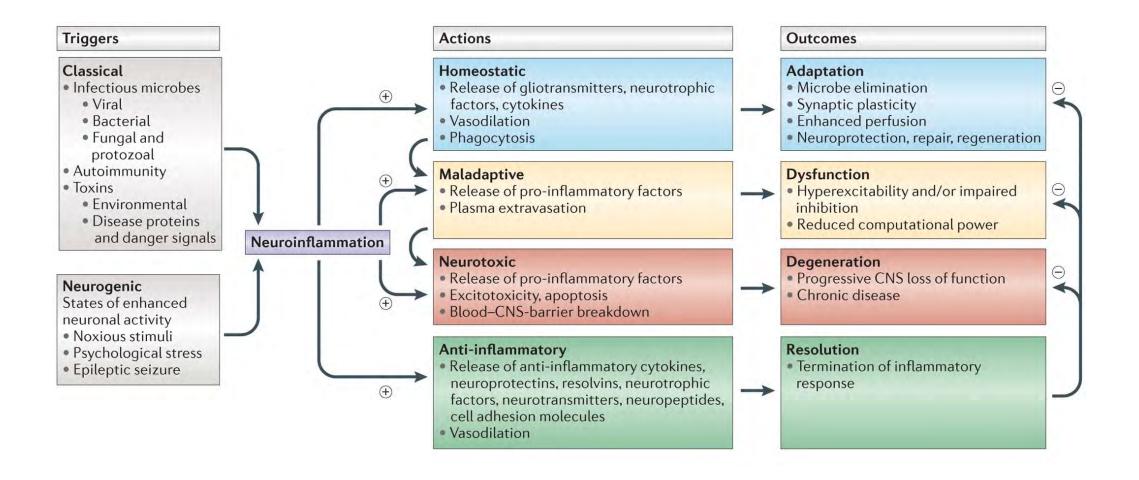
Activity

Connectivity

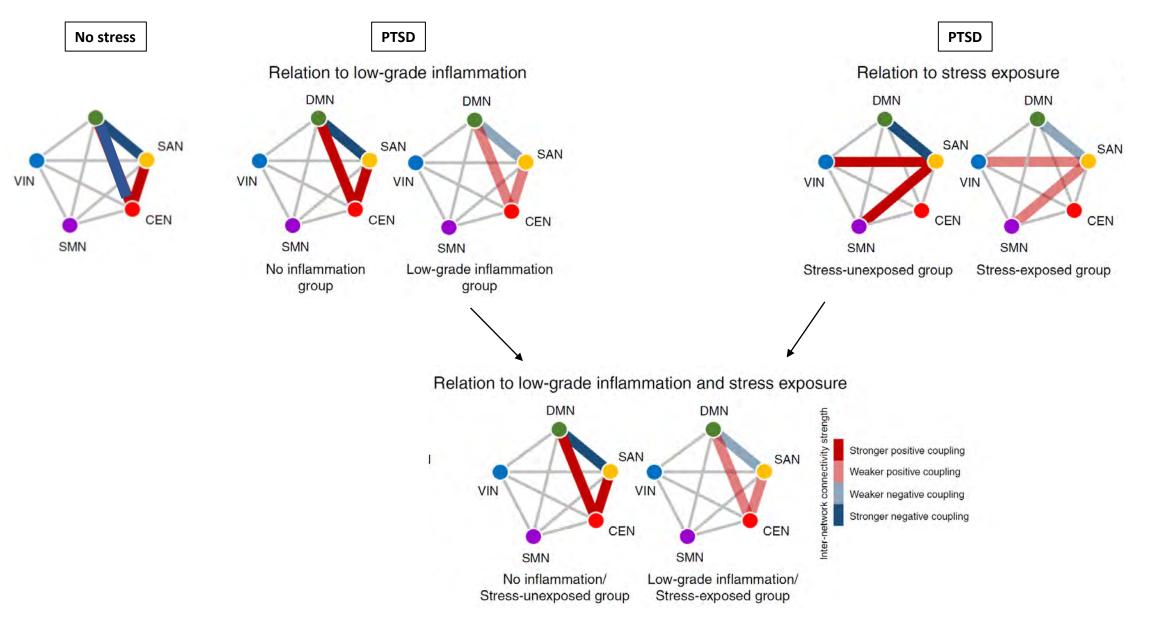
Atrophy



Sha 2018

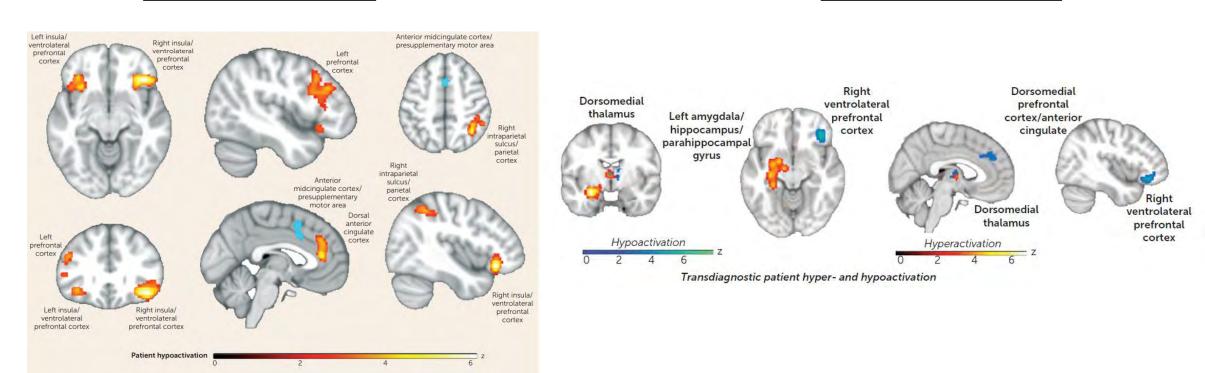

Chronic stress related diseases

Stress is associated with (Cohen 2007)


- 1.Depression and anxiety
- 2. Cardiovascular disorders
- 3.HIV to AIDS progression
- 4. Cancer progression or relapse

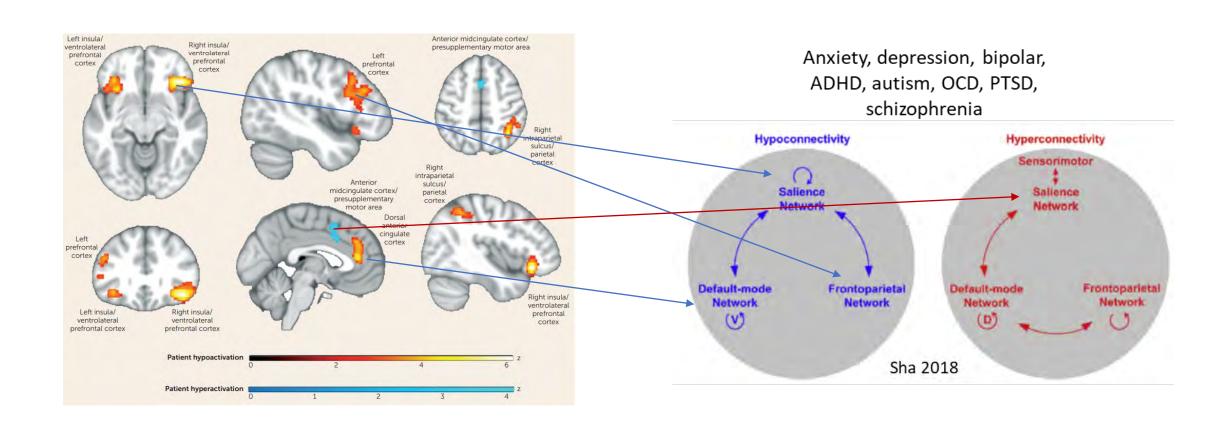
Neuroinflammation

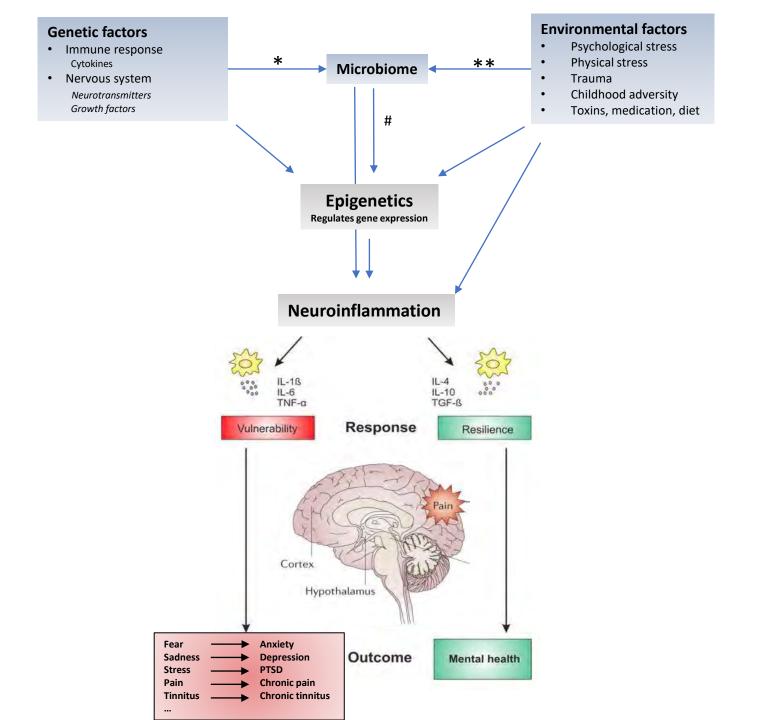
Stress and neuroinflammation



Common activity changes in schizophrenia, bipolar or unipolar depression, anxiety, and substance use disorder

Cognitive dysfunction


Patient hyperactivation


Emotional dysfunction

McTeague 2017 McTeague 2017

Triple network model and mental disorders

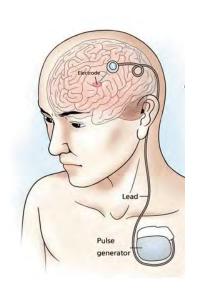
Neuroplasticity

= capacity of the nervous system to modify its organization (structure and function), adjusting itself to changes in the environment

Brain disorders

= maladaptive neuroplasticity
Adaptive reconfiguration of dynamically interacting brain networks

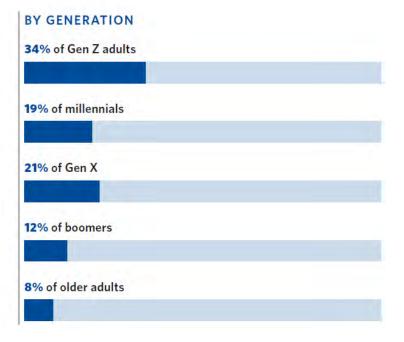
Neuroplasticity


= capacity of the nervous system to modify its organization (structure and function), adjusting itself to changes in the environment

Neuromodulation

= induction of neuroplastic changes via local application of electrical, magnetic, sound, pharmacological or optic stimuli

Why neuromodulation?


Covid related psychological impact: esp younger people

Population College	<u>Stress</u>	<u>Anxiety</u>	Depression	Sleep	<u>Reference</u>
students Pregnant	23%	29%	37%		Wang 2021
women	56%	33%	27%		Demissie 2021
Health care workers	29%	34%	31%	36%	Sahebi 2021
General population	36%	27%	28%	27%	Nochaiwong 2021
Pre-covid		6.6% 12.9% lifetim	5.4% e 9.6% lifetime		Steel 2014

NEARLY 1 IN 5 ADULTS (19%) SAY THEIR MENTAL HEALTH IS WORSE THAN THIS TIME LAST YEAR

Efficacy of psychotherapy and psychopharmacology

3,782 RCTs and 650,514 patients (Leichsenring 2022)

MDD, anxiety, PTSD, OCD, somatoform disorders, eating disorders, ADHD, SUD, insomnia, schizophrenia spectrum disorders, and bipolar disorder.

Psychopharmacology and psychotherapy are equally effective (Cuijpers 2017)

Small effect sizes (Standard Mean Difference) (Leichsenring 2022)

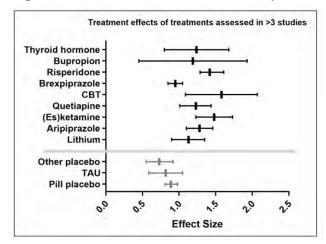
0.34 SMD for psychotherapy > control

0.36 SMD for pharmacology > placebo

NNT for psychotherapy is 7.4 (Schefft 2019)

NNT for SSRI and TCA is 7 and 9 (Arroll 2009)

Combined is better than monotherapy


0.31 SMD of combined vs monotherapy

Combination in treatment resistant depression is better (Scott 2022)

NNT	Cohen's d ^a	Effect size		
1	_	Perfect ^b		
2.3	0.8	Large		
3.6	0.5	Medium		
9.0	0.2	Small		

Sullivan2021

Augmentation for treatment resistant depression

Antidepressants in >65

Antidepressants for MDD >65 yo (Tham 2016)

No better than placebo for response or remission

Better for prevention relapse

	SSF	RI Placeho			Odds Ratio	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Kasper (Escitalopram)	78	170	85	180	33.7%	0.95 [0.62, 1.44]		
Kasper (Fluoxetine)	61	164	85	180	32.0%	0.66 [0.43, 1.02]	-	
Roose (Citalopram)	34	84	34	90	16.0%	1.12 [0.61, 2.06]		
Schatzberg (Fluoxetine)	39	99	40	96	18.2%	0.91 [0.51, 1.61]		
Total (95% CI)		517		546	100.0%	0.86 [0.67, 1.10]	•	
Total events	212		244					
Heterogeneity: Tau2 = 0.0	0; Chi ² = 2	2.38, df	= 3 (P =	0.50); P	= 0%		t. do do 1 1 1	
Test for overall effect; Z =			-1.	2007			0.1 0.2 0.5 1 2 5 10 Favours placebo Favours SSRI	

. 2. Response to acute treatment with SSRIs versus a placebo in elderly subjects, aged 65 years and older, with depressive disorder: Odds Ratio.

	SSF	SSRI Placeho				Odds Ratio	Odds Ratio
Study or Subgroup	Events Total		Events Total		Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Kasper (Escitalopram)	78	170	85	180	33.7%	0.95 [0.62, 1.44]	
Kasper (Fluoxetine)	61	164	85	180	32.0%	0.66 [0.43, 1.02]	-
Roose (Citalopram)	34	84	34	90	16.0%	1.12 [0.61, 2.06]	-
Schatzberg (Fluoxetine)	39	99	40	96	18.2%	0.91 [0.51, 1.61]	
Total (95% CI)		517		546	100.0%	0.86 [0.67, 1.10]	**************************************
Total events	212		244				
Heterogeneity: Tau2 = 0.0	0; Chi2 = 1	2.38, df	= 3 (P =	0.50); P	= 0%		to do
Test for overall effect: Z =	1.20 (P =	0.23)					0.1 0.2 0.5 1 2 5 10 Favours placebo Favours SSRI

I. Remission after acute treatment with SSRIs versus a placebo in elderly subjects, aged 65 years and older, with depressive disorder: Odds Ratio.

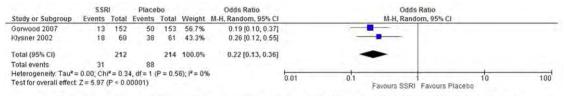
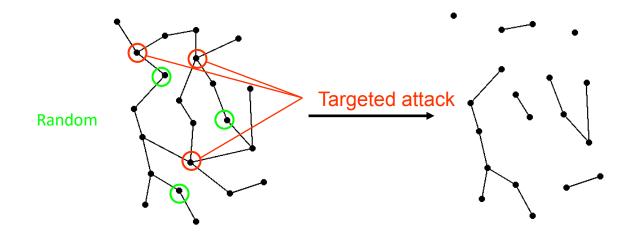


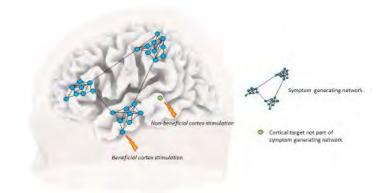
Fig. 4. Relapse in depressive disorder after maintenance treatment with SSRIs or a placebo for up to one year: Odds Ratio.

TMS TENS

tDCS tACS tES tRNS

Non-Surgical Neuromodulation




ECT


Neurofeedback

Network stimulation

Albert 2000 De Ridder 2017

Neuromodulation techniques

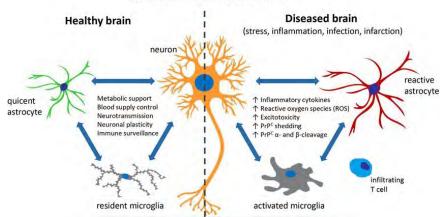
	TMS	tDCS	tACS*	tRNS*	implants	ECT	NFB
Putative mechanism	A & β synchronization	Depolarize Hyperpolarize	Entrain at specified frequency	Desynchronize ?	Virtual lesion	Epileptic reset	Train oscillations
	Suprathreshold for AP	Subthreshold for AP	Subthreshold for AP	Subthreshold for AP	Subthreshold for AP		Subthreshold for AP
Functional connectivity	changes	changes	changes	changes	changes	changes	changes
Effective connectivity	changes	changes	changes	?	changes	changes	changes

Electrical stimulation modulates neuroinflammation

All kinds of electrical stimulation modulate neuroinflammation (Chakravarthy 2018)

SCS, DBS, VNS, DRG, PNS, TENS, tDCS

Tonic and burst stimulation


Via modulation of inflammatory cytokines (Chakravarthy 2018, Caylor 2019)

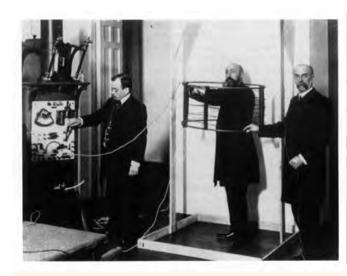
Via modulation of astrocytes and microglia (Vedam-Mai 2012, Fenoy 2014, Campos 2010, Etievant 2016, Caylor 2019)

Astrocyte	Wrengtu	Astrucyte	Mircrogila
S & B	YELV "	W S	Symaphic Wife
NMOAR AMPAR	23	GARAH	GyA
Pool Synaptic Nituron	(7)	Post	Synapic Burch
Control in an In avenue		Cutokinor	Decrease
Cytokines Increase Excitatory Post-Synapt	ric		ost-Synaptic

Therapy	Involved Cytokines	Role of Cytokines	Effect of Therapy
Tonic spinal cord stimulation	IL-15, IL-2, IL-12	Proinflammatory	Reduction in pro-inflammatory cytokines after SCS in CRPS patients (20)
	IL-4, IL-5, IL-10	Anti-inflammatory	Reduction in anti-inflammatory cytokines after SCS in CRPS patients (20)
Burst spinal cord stimulation	IL-10	Anti-inflammatory	Increase in level of IL-10 after burst SCS in back pain patients (22)
Dorsal root ganglion stimulation	IL-I eta , TNF- $lpha$	Proinflammatory	Inhibition of pro inflammatory expression <i>in vitro</i> using light-induced injury model of microglia (31)
Vagus nerve stimulation	TNF, IL-1β, IL-8, HMGB1	Proinflammatory	Reduction in proinflammatory cytokines in cervical VNS in humans (50,51)
Peripheral nerve stimulation	IL-1B, IL-6, IL-1β	Proinflammatory	Reduction in proinflammatory cytokines with electroacupuncture in inflamed skin tissues (69)
TENS and subcutaneous electrical stimulation	IL-1, IL-6, TNF-α	Proinflammatory	Reduction in proinflammatory cytokines in a rat model (11)

Neuroimmune crosstalk

Caylor 2019 Salvesen 2018


Transcranial Magnetic Stimulation

d'Arsonval (1896)

Thompson, 1910

Magnusson & Stevens, 1911

Barker 1985

Timeline | TMS in cognitive neuroscience

Faraday discovers electromagnetic induction.

Ferrier uses electrical currents to directly stimulate the cortex and map cortical responses in dogs and monkeys.

1875

Silvanus P. Thompson experiments on himself. Again, the phosphenes were due to retinal, not cortical, stimulation. Barker begins using brief magnetic pulses to stimulate peripheral nerves and reports muscle contractions and skin sensations.

Amassian et al. and Day et al. publish the first studies of TMS as a virtual-lesion technique in the visual and motor cortex, respectively.

Pascual-Leone et al. produce visual extinction using repetitive pulse TMS.

1832

1848

1910

1965

1974

1985

1989

1991

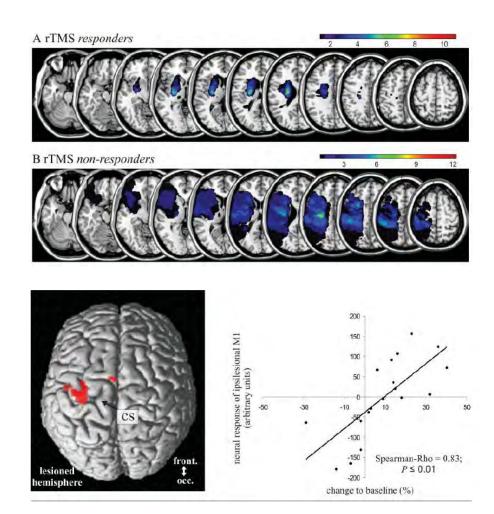
1994

1996

Du Bois-Reymond shows a direct link between electric current and nerve-cell activity. d'Arsonval presents the first report of magnetically induced phosphenes in human subjects by stimulation of the retina, not the cortex.

1896

Bickford and Freeming stimulate human and animal peripheral nerves using an oscillating magnetic field, but the presence of an oscillating field precludes physiological recording or temporal acuity. Barker and colleagues report the first successful magnetic stimulation of the human motor cortex.

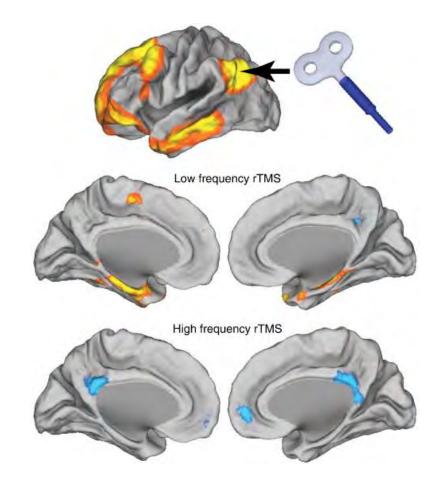

Pascual-Leone et al. report TMS-induced speech arrest in a population of epileptic subjects. George et al. report TMSrelated improvements in mood and concomitant changes in blood flow of the prefrontal cortex in depression.

What does TMS do in the brain?

TMS and stroke

HF TMS of stroke side only efficacious for subcortical stroke (Ameli 2009)

Improvement correlates with fMRI BOLD change ie with how much the cortex can be activated


What does TMS do in the brain?

TMS and FC

TMS changes functional connectivity (Fox 2012)

LF rTMS increases FC

HF rTMS decreases FC

rTMS in mental disorders

Large to very effect size 2 to 5 times effect size of medication (0.36) or psychotherapy (0.34)

	Effect size	d	Reference
	Very small	0.01	[10]
	Small	0.20	[9]
r's	Medium	0.50	[9]
	Large	0.80	[9]
	Very large	1.20	[10]
	Huge	2.0	[10]

						Heterog	eneity	Egger's	Medium	
	K	N	SMD (95% CM	Z	p values	Q	p values	l ²	t	Large
Core symptom severity										Very large
TMS			///							Huge
ADHD	2	51	$-0.50 \left(\frac{1}{3} \right)$ to 0.33)	1.18	0.237	2.11	0.146	52		11495
Depression	76	3366	-0.45/(-0.57 to -0.33)//	7.16	<0.001	197.91	<0.001	62	1.95	0.055
Unipolar	42	2336	-0.60 (-0.78 to -0.42)	6.45	<0.001	154.91	<0.001	74	2.85	0.007
Bipolar	4	145	-0.20 (-0.52 to 0.11)	1.26	0.209	1.84	0.606	0		
GAD	3	111	-1.80 (-2.60 to -1.00)	4.40	<0.001	5.37	0.068	63		
OCD	26	760	-0.66 (-0.91 to -0.41)	5.10	<0.001	72.18	<0.001	65	3.31	0.003
PTSD	10	255	-1.09 (-1.61 to -0.57)	4.10	<0.001	42.44	<0.001	79	0.59	0.572
Schizophrenia										
Positive symptoms	33	1474	-0.11 (-0.33 to 0.11)	0.96	0.338	153.20	<0.001	77	2.27	0.029
Negative symptoms	31	1266	-0.49 (-0.73 to -0.26)	4.07	<0.001	133.98	<0.001	78	2.45	0.020
Total symptoms	29	1334	-0.50 (-0.66 to -0.33)	5.81	<0.001	58.67	<0.001	52	2.42	0.022
Auditory hallucinations	16	545	-0.19 (-0.36 to -0.02)	2.19	0.029	12.62	0.632	0	2.64	0.020
SUD	4	100	-1.46 (-3.35 to 0.42)	1.52	0.128	49.44	< 0.001	92		

Chou 2020 Vacas 2018

0.77

0.58

13

293

rTMS for cognitive functioning

AD & MCI (memory)

AD & MCI (behavior, psychology)

Chou 2020

Vacas 2020

Cognitive functioning								Large	0.80	[9]
TMS								Very large	1.20	[10]
Attention								Huge	2.0	[10]
Depression	3	146	-0.10 (-0.44 to 0.23)	0.67	0.538	0.97	0.617	0		
Schizophrenia	3	126	-0.18 (-0.64 to 0.29)	0.74	0.457	3.26	0.196	39		
Executive functioning										
Depression	8	292	-0.41 (-0.39 to 0.08)	1.35	0.176	7.46	0.383	6		
Schizophrenia	5	142	-0.28 (-0.74 to 0.18)	1.19	0.233	6.82	0.146	41		
Processing speed										
Depression	7	276	0.07 (-0.17 to 0.31)	0.59	0.553	4.71	0.582	0		
Schizophrenia	5	168	-0.26 (-0.57 to 0.04)	1.70	0.090	1.84	0.765	0		
Norking memory										
Depression	7	306	0.02 (-0.21 to 0.25)	0.19	0.848	3.88	0.694	0		
Schizophrenia	10	313	-0.65 (-0.39 to 0.06)	1.42	0.156	9.18	0.421	2 1.	86	
SUD	2	69	-0.66 (-1.87 to 0.55)	1.07	0.285	5.95	0.015	83		

Hyde 2022

Effect size

Very small

Small

Medium

d

0.01

0.20 [9]

0.50 [9]

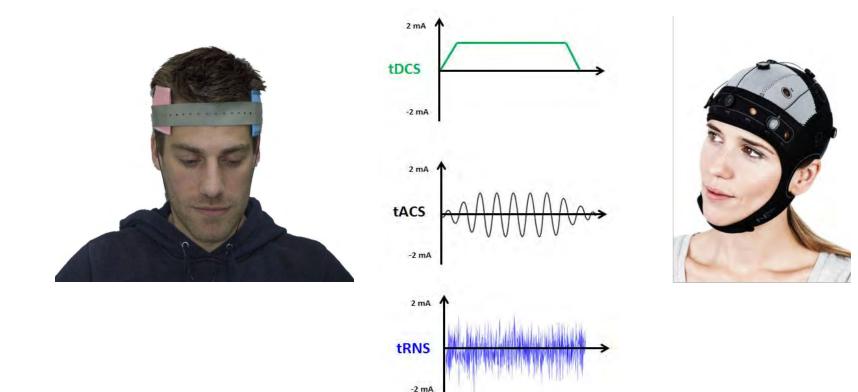
Reference

[10]

rTMS and concomitant medication

rTMS influenced by concomitant medication

Better with **psychostimulants** (Hunter 2019) and **antidepressants** (Sehatzadeh 2019, Wei 2017)


Worse with antipsychotics (Hebel 2020) and unknown for benzodiazepines (worse: Hunter 2019 & Kaster 2019, no difference: Fitzgerald 2020).

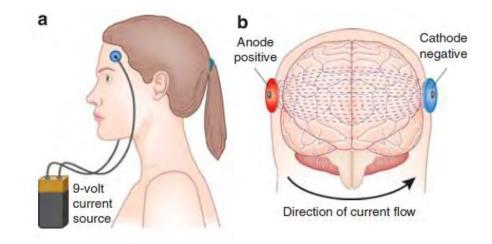
No influence of <u>lithium</u> or <u>antiepileptics</u> (Hebel 2021)

Transcranial Electrical Stimulation

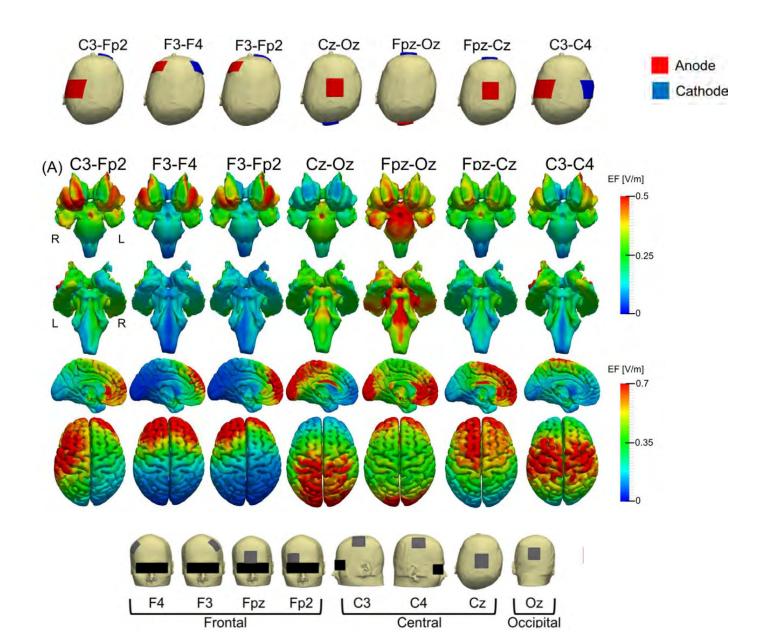
tDCS Transcranial direct current stimulation

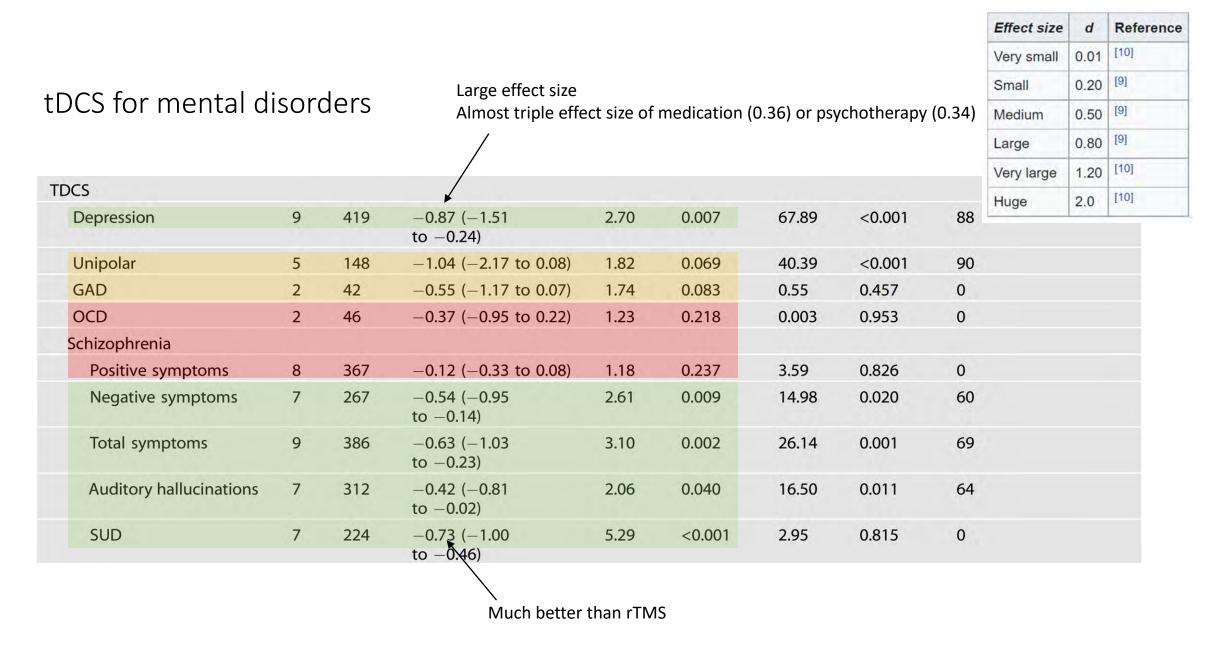
In contrast to TMS does not evoke motor response on motor cortex stimulation

tDCS


tDCS basics

25% of transcranially applied direct current reaches the brain (Vöröslakos 2018)


calculations on realistic head models
validation in animal experiments (Rush 1968)
validation in humans (Dymond 1975)


Current flows from anode to cathode (George 2010)

Modulates underlying brain cells' resting state potential

tDCS targets

tDCS for cognitive functioning

							L	arge	0.80	[9]
					Hetero	geneity	V	ery large	1.20	[10]
к	N	SMD (95% CI)	z	p values			ji H	luge	2.0	[10]
			- T	,	7	,				
6	247	-0.30 (-0.55 to -0.05)	-2.31	0.021	6.15	0.292	19			
3	154	-0.19 (-0.51 to 0.12)	1.20	0.231	0.12	0.942	0			
7	261	-0.13 (-0.37 to 0.12)	1.00	0.317	3.76	0.710	0			
							9,1			
3	123	0.05 (-0.31 to 0.41)	0.29	0.771	1.34	0.512	0			
7	261	-0.38 (-0.78 to 0.18)	1.87	0.061	14.23	0.027	58			
5	198	-0.11 (-0.42 to 0.19)	0.73	0.465	4.54	0.338	12			
7	279	-0.38 (-0.74 to -0.03)	2.14	0.032	12.24	0.057	51			
	3 7 3 7	6 247 3 154 7 261 3 123 7 261 5 198	6 247 -0.30 (-0.55 to -0.05) 3 154 -0.19 (-0.51 to 0.12) 7 261 -0.13 (-0.37 to 0.12) 3 123 0.05 (-0.31 to 0.41) 7 261 -0.38 (-0.78 to 0.18) 5 198 -0.11 (-0.42 to 0.19) 7 279 -0.38 (-0.74	6 247 -0.30 (-0.55 to -0.05) 3 154 -0.19 (-0.51 to 0.12) 1.20 7 261 -0.13 (-0.37 to 0.12) 1.00 3 123 0.05 (-0.31 to 0.41) 0.29 7 261 -0.38 (-0.78 to 0.18) 1.87 5 198 -0.11 (-0.42 to 0.19) 0.73 7 279 -0.38 (-0.74 2.14	6 247 -0.30 (-0.55 to -0.05) 3 154 -0.19 (-0.51 to 0.12) 1.20 0.231 7 261 -0.13 (-0.37 to 0.12) 1.00 0.317 3 123 0.05 (-0.31 to 0.41) 0.29 0.771 7 261 -0.38 (-0.78 to 0.18) 1.87 0.061 5 198 -0.11 (-0.42 to 0.19) 0.73 0.465 7 279 -0.38 (-0.74 2.14 0.032	K N SMD (95% CI) Z p values Q 6 247 -0.30 (-0.55 to -0.05) 3 154 -0.19 (-0.51 to 0.12) 1.20 0.231 0.12 7 261 -0.13 (-0.37 to 0.12) 1.00 0.317 3.76 3 123 0.05 (-0.31 to 0.41) 0.29 0.771 1.34 7 261 -0.38 (-0.78 to 0.18) 1.87 0.061 14.23 5 198 -0.11 (-0.42 to 0.19) 0.73 0.465 4.54 7 279 -0.38 (-0.74 2.14 0.032 12.24	6 247 -0.30 (-0.55 to -0.05) -2.31 0.021 6.15 0.292 to -0.05) 3 154 -0.19 (-0.51 to 0.12) 1.20 0.231 0.12 0.942 7 261 -0.13 (-0.37 to 0.12) 1.00 0.317 3.76 0.710 3 123 0.05 (-0.31 to 0.41) 0.29 0.771 1.34 0.512 7 261 -0.38 (-0.78 to 0.18) 1.87 0.061 14.23 0.027 5 198 -0.11 (-0.42 to 0.19) 0.73 0.465 4.54 0.338 7 279 -0.38 (-0.74 2.14 0.032 12.24 0.057	K N SMD (95% CI) Z p values Q p values P 6 247 -0.30 (-0.55 to -0.05) -2.31 0.021 6.15 0.292 19 3 154 -0.19 (-0.51 to 0.12) 1.20 0.231 0.12 0.942 0 7 261 -0.13 (-0.37 to 0.12) 1.00 0.317 3.76 0.710 0 3 123 0.05 (-0.31 to 0.41) 0.29 0.771 1.34 0.512 0 7 261 -0.38 (-0.78 to 0.18) 1.87 0.061 14.23 0.027 58 5 198 -0.11 (-0.42 to 0.19) 0.73 0.465 4.54 0.338 12 7 279 -0.38 (-0.74 2.14 0.032 12.24 0.057 51	K N SMD (95% CI) Z p values Q p values i Huge 6 247 -0.30 (-0.55 to -0.05) -2.31 0.021 6.15 0.292 19 3 154 -0.19 (-0.51 to 0.12) 1.20 0.231 0.12 0.942 0 7 261 -0.13 (-0.37 to 0.12) 1.00 0.317 3.76 0.710 0 3 123 0.05 (-0.31 to 0.41) 0.29 0.771 1.34 0.512 0 7 261 -0.38 (-0.78 to 0.18) 1.87 0.061 14.23 0.027 58 5 198 -0.11 (-0.42 to 0.19) 0.73 0.465 4.54 0.338 12 7 279 -0.38 (-0.74 2.14 0.032 12.24 0.057 51	Heterogeneity K N SMD (95% CI) Z p values Q p values 6 247 -0.30 (-0.55 to -0.05) 3 154 -0.19 (-0.51 to 0.12) 1.20 0.231 0.12 0.942 0 7 261 -0.13 (-0.37 to 0.12) 1.00 0.317 3.76 0.710 0 3 123 0.05 (-0.31 to 0.41) 0.29 0.771 1.34 0.512 0 7 261 -0.38 (-0.78 to 0.18) 1.87 0.061 14.23 0.027 58 5 198 -0.11 (-0.42 to 0.19) 0.73 0.465 4.54 0.338 12

0.99

Chen 2022

AD & MCI (memory)

AD & MCI (behavior and psychology)

Hyde 2022

Effect size

Very small

Small

Medium

Reference

[10]

0.01

0.20 [9]

0.50 [9]

tDCS + medication (McLaren 2018)

Glutamate

Antagonist decreased Agonist increased

GABA

Increased

Serotonin

increased

Dopamine

Inverted U curve

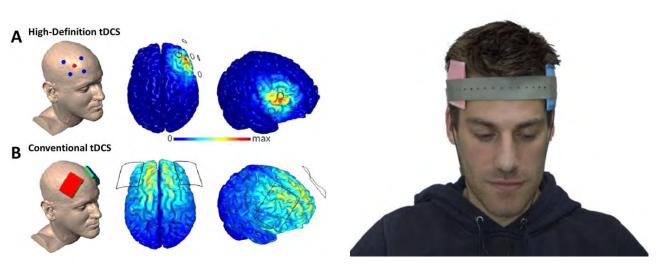
Noradrenaline/adrenaline

Agonist increased

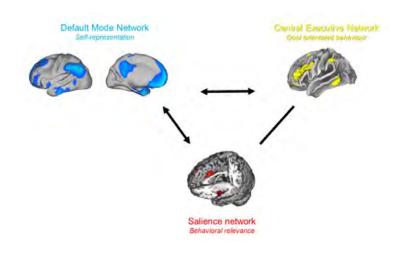
Antagonist decreased

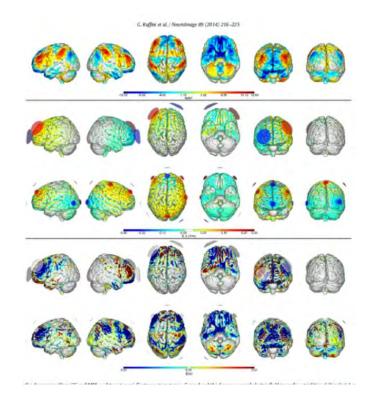
Amphetamine

increased


Calcium and sodium blockers

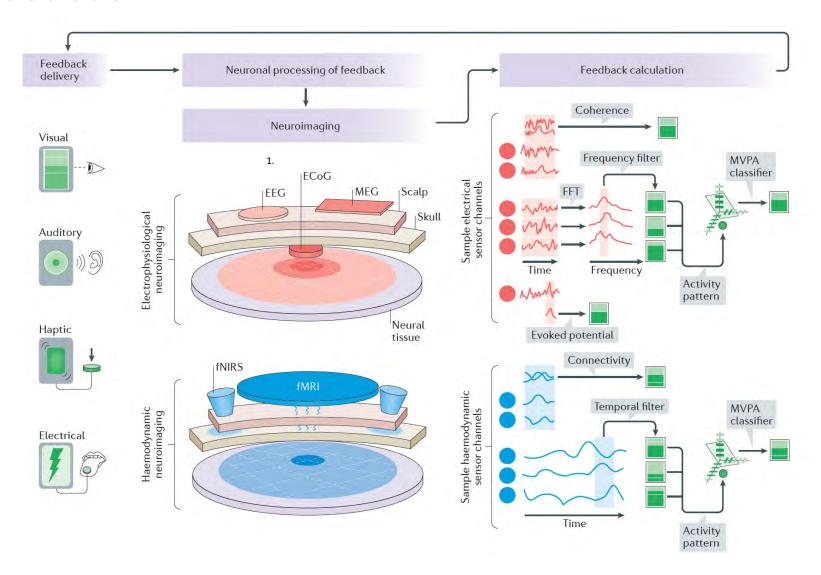
Decreased


Why HD-tES?



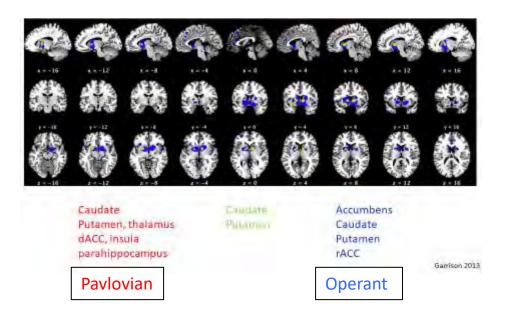
Two reasons

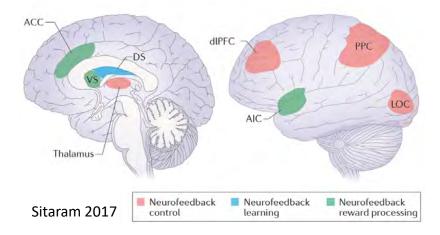
- 1. More focal stimulation (Edwards 2013, Ester 2021)
- 2. Multitarget = network stimulation (Ruffini 2014)

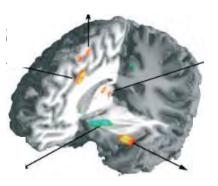


Neurofeedback

Neurofeedback

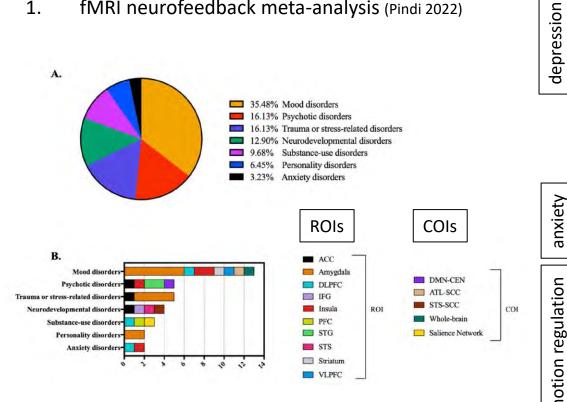


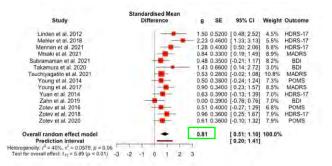

Neurofeedback

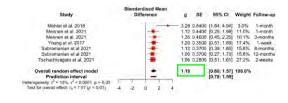

Neural correlates of Neurofeedback (Sitaram 2017)

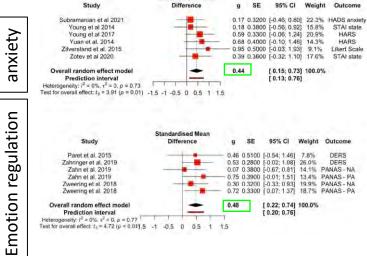
Paying attention to visual feedback involves visual cortex and FP attentional network = CEN

The feedback itself involves accumbens as well as dACC and insula = SN
The learning occurs in dorsal striatum (caudate & putamen)



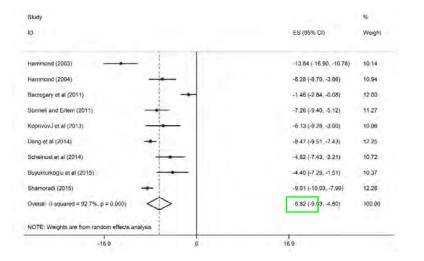



Ullsperger 2003


Is neurofeedback evidence based?

fMRI neurofeedback meta-analysis (Pindi 2022)

Standardised Mean


Effect size	d	Reference
Very small	0.01	[10]
Small	0.20	[9]
Medium	0.50	[9]
Large	0.80	[9]
Very large	1.20	[10]
Huge	2.0	[10]

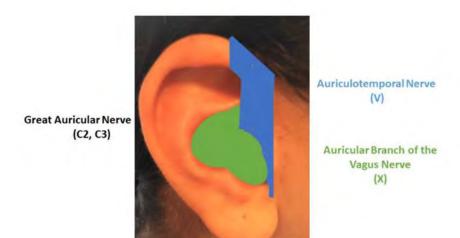
Is neurofeedback evidence based?

- 1. fMRI neurofeedback
- 2. EEG neurofeedback meta-analyses
 - 1. ADHD (Fan 2022)
 Improves inattention, not hyperactivity
 - 2. OCD (Zafarmand 2021)
 Improves OCD
 - 3. PTSD (Steingrimsson 2019)

 Large effect size, low certainty
 - 4. Internalizing disorders (Perez 2022)

 Small to moderate effect sizes, low certainty

MCID 5? Strauss 2018


	Neuro	ofeedb	ack.	Wa	iting li	st		Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Kelson 2013	44.2	9.6	5	78.8	9	5	26.7%	-3.36 [-5.62, -1.10]	-	
Noohi 2017	30.4	6.2	15	51.1	6.2	15	35.1%	-3.25 (-4.38, -2.11)	-	
van der Kolk 2016	44.2	19.2	28	58.2	20.6	24	38.2%	-0.69 [-1.26, -0.13]	-	
Total (95% CI)			48			44	100.0%	-2.30 [-4.37, -0.24]	-	
Heterogeneity: Tau²: Test for overall effect				= 2 (P <	0.000	1); *=	89%	ţ	10 -5 0 5 Favours Neurofeedback Favours Waiting list	10

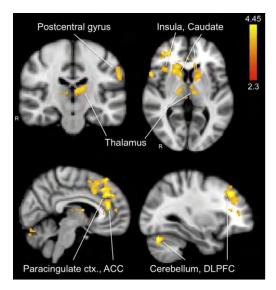
Vagus nerve stimulation

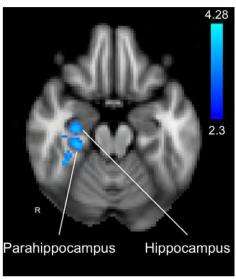
Non-invasive VNS modulates triple network

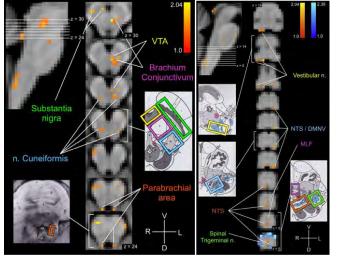
Non-invasive VNS (Frangos 2016)

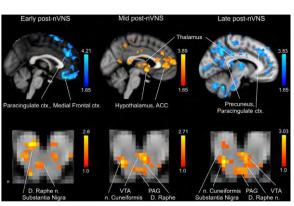
Activates

rdACC + insula + caudate = SN Thalamus & DLPFC (CEN)

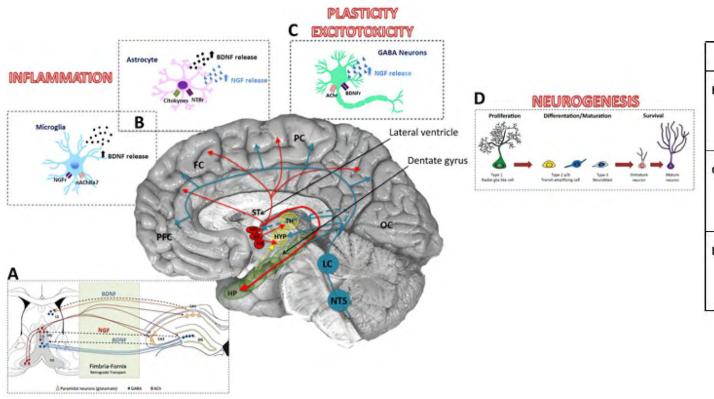

NTS, dorsal raphe, VTA, Subst Nigra


Deactivates


Hippocampus, parahippocampus (DMN)

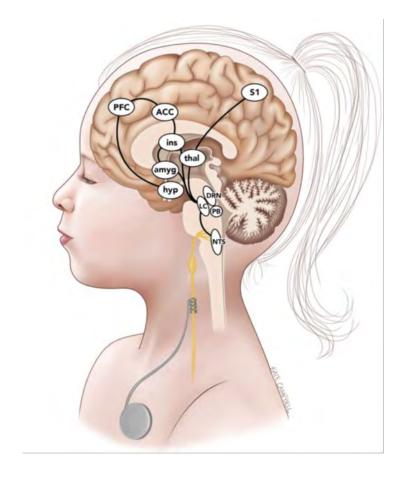

On stopping stimulation

Early deactivation of SN
Activation of DMN (13-15 min)
Late deactivation of DMN



VNS modulates plasticity, inflammation and neurogenesis

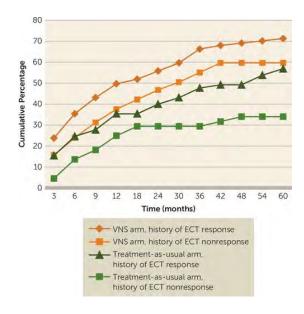
Septo-hippocampal system

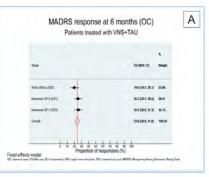

21.7247.77	NO	GF	BD	NF
Brain Areas	Protein	<u>mRNA</u>	Protein	mRNA
Hippocampus 5Hz 20Hz			-	<u>-</u>
Cerebral Cortex 5Hz 20Hz			- 101	
Hypothalamus 5Hz 20Hz	<u> </u>	仓	-	100 100

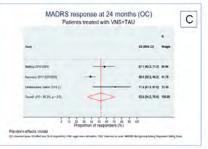
Difference respect to Fasted unstimulated control rats.

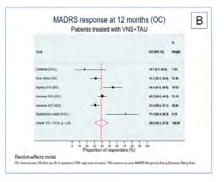
☆☆=>40%

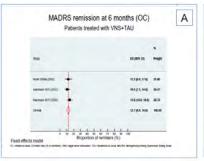
VNS clinically

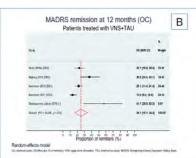

```
Reimbursed for (Johnson 2018)
      Depression
      Epilepsy
Other indications (Johnson 2018, Patel 2021, Wang 2021)
      Anti-inflammatory disorders
            sepsis,
            lung injury
            rheumatoid arthritis (RA)
            Diabetes
      Pain (Patel 2021)
      Cognition (Patel 2021)
      Cardiovascular function (Patel 2021)
      Parkinson's disease (Wang 2021)
      Autism (Wang 2021)
      Stroke (Wang 2021)
      TBI (Wang 2021)
```

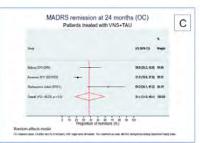



VNS for depression


Meta-analytic proof of benefit (Bottomley 2020)


Efficacy improves in time (Aaronson 2017)



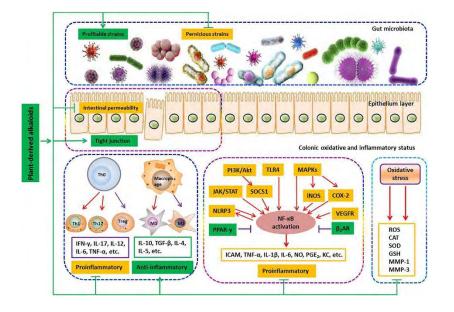


Chemical brain

Why do humans like drugs?

Plants defend themselves against bacteria, parasites and herbivores by producing toxins (alkaloids)

Humans get reward (=incentive salience) to ingest these protective toxins against bacteria, parasites (Sullivan 2008) and viruses (Abookleesh 2022)


Plants alkaloids protect human microbiome (IBS) (Peng 2019)

Inhibit pathogenic non-commensal bacteria and stimulate commensal bacteria

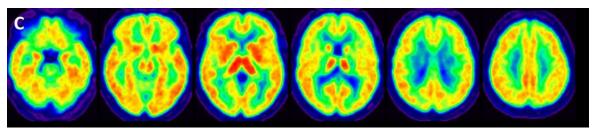
Activate anti-inflammatory and inhibit pro-inflammatory responses

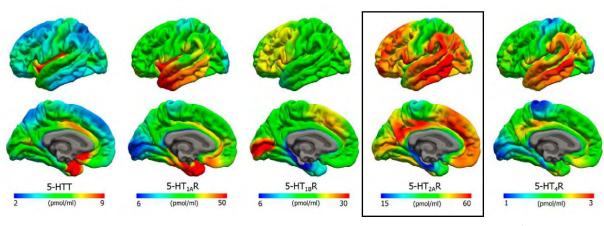
Toxin (typical source)	Receptor					
Nicotine ^a (tobacco)	Nicotinic acetylcholine					
Arecoline ^a (betel nut)	Muscarinic acetylcholine					
Cocaine ^c (coca)	Adrenergic, Dopaminergic					
Ephedrine ^c (khat)	Adrenergic, Dopaminergic					
Caffeine ^b (coffee)	Adenosine					
Theophylline ^b (tea)	Adenosine					
Theobromine ^b (chocolate)	Adenosine					
Morphine ^a (opium poppy)	Opioid					
Δ9-THC ^a (cannabis)	Cannabinoid					
Psilocybin	Serotonin					
DMT	Serotonin					
Ibogain	Serotonin					
Mescaline	Serotonin					

Hallicunogenics

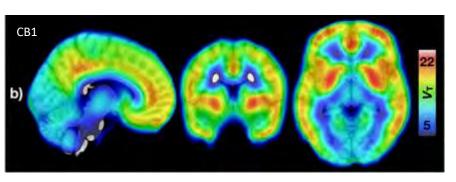
Hallicunogenics

- 1. Delirants:
 - 1. Anticholinergics: atropine (belladonna)
 - 2. GABAergics: mushroom
- 2. Dissociatives: ketamine, NO, opioidergics (salvia divinorum)
- 3. Psychedelics
 - 1. Serotoninergics
 - 1. Act on 5-HT2A receptor
 - 2. 3 families
 - 1. Tryptamine:
 - 1. Psilocybin = magic mushrooms
 - 2. DMT = ayahuasca: vine, liana
 - 2. Phenetylamine:
 - 1. Mescaline = cactus (peyote)
 - 2. MDMA
 - 3. Lysergamide:
 - 1. LSD = ergot (fungus on rye)
 - 2. Cannabinoidergics
 - 1. Act on CB1 receptor: THC (cannabis)

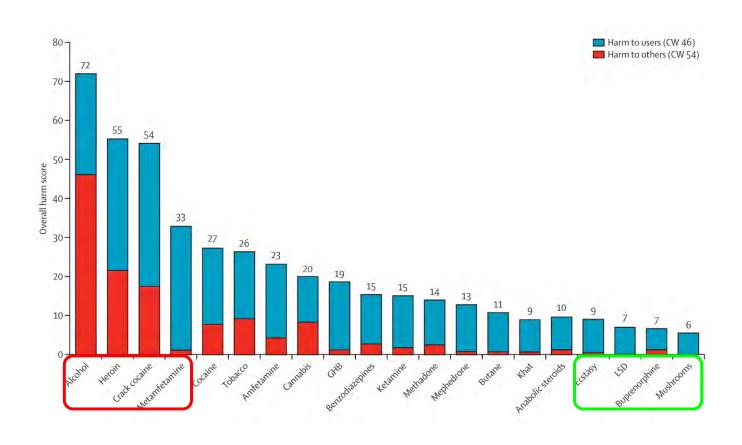



Psychedelics

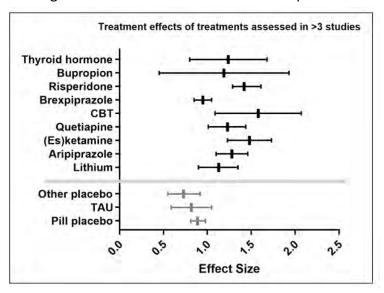
Hallicunogenics

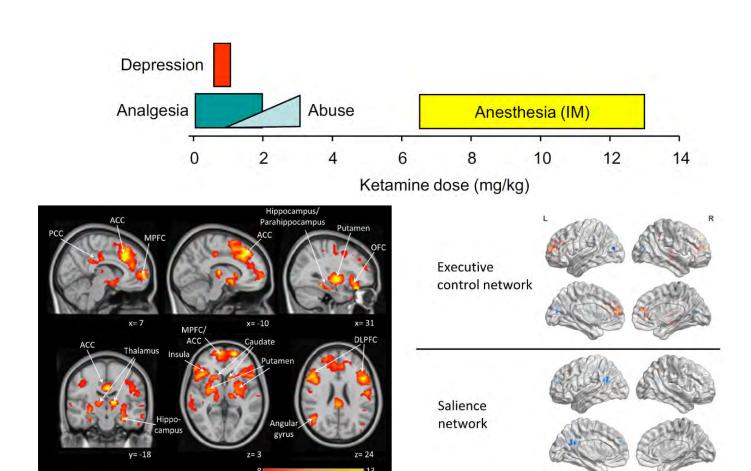

- 1. Delirants: anticholinergics, GABAergics
- 2. Dissociatives: ketamine, NO, opioidergics
- 3. Psychedelics
 - 1. Serotoninergics
 - 1. Act on 5-HT2A receptor
 - 2. 3 families
 - 1. Tryptamine: psilocybin, DMT(ayahuasca)
 - 2. Phenetylamine: mescaline, MDMA
 - 3. Lysergamide: LSD
 - 2. Cannabinoidergics
 - 1. Act on CB1 receptor: THC

NMDA receptors (McGinnity 2014)



Beliveau 2017

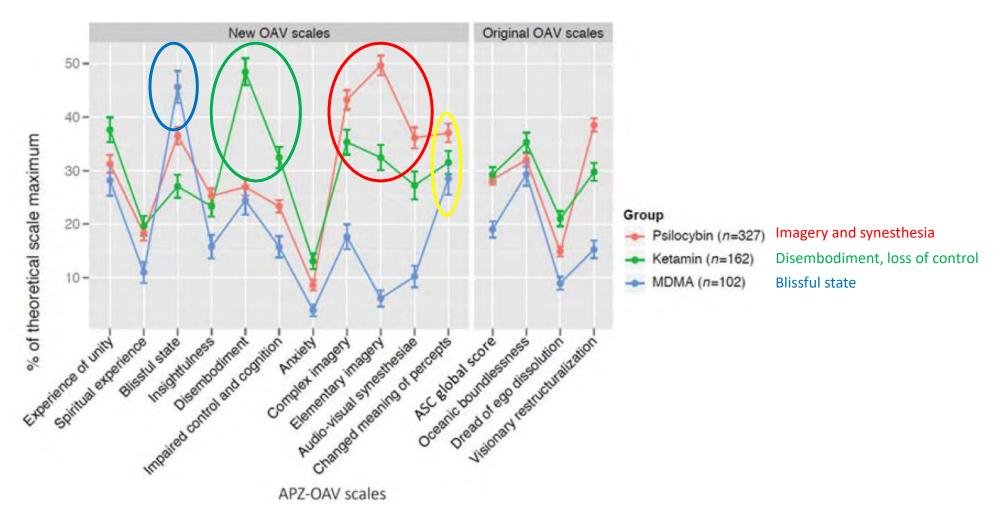

Harm scores



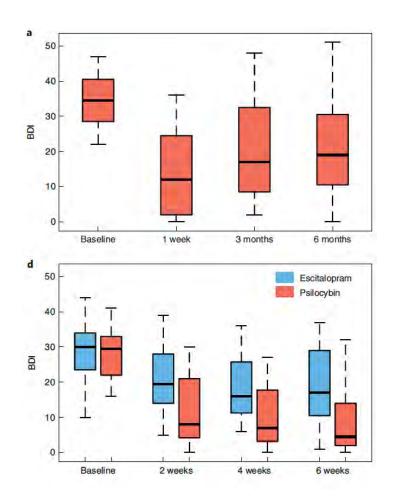
What do psychedelics do?

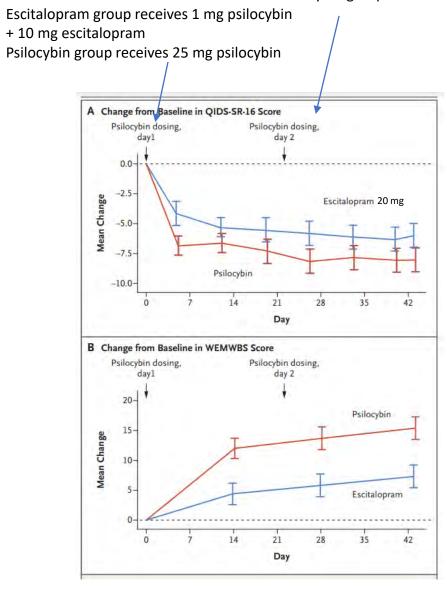
Ketamine

Augmentation for treatment resistant depression

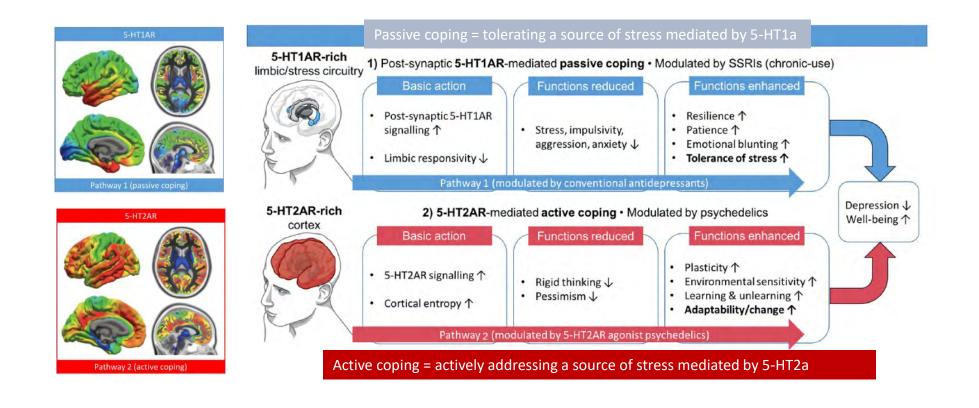


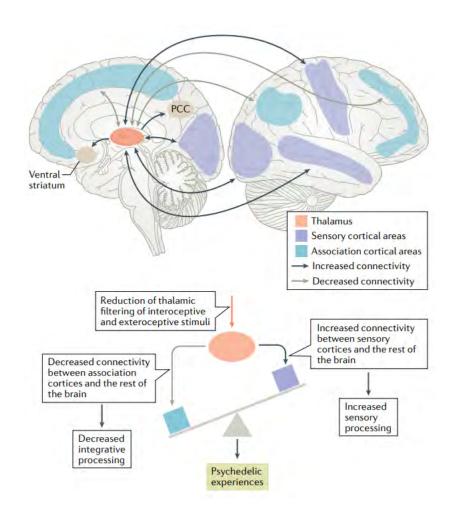
Activity changes in SN, DMN, CEN


Connectivity increase CEN
Connectivity decrease DMN to SN


Scott 2022 Bryant 2019 Mueller 2018

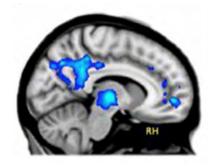
Different drugs different clinical effects


Psychedelics act fast and equal to SSRI

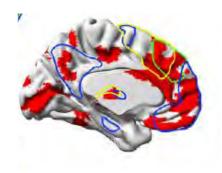


Daws 2022 Carhart-Harris 2021

Serotonin and adaptation to stress



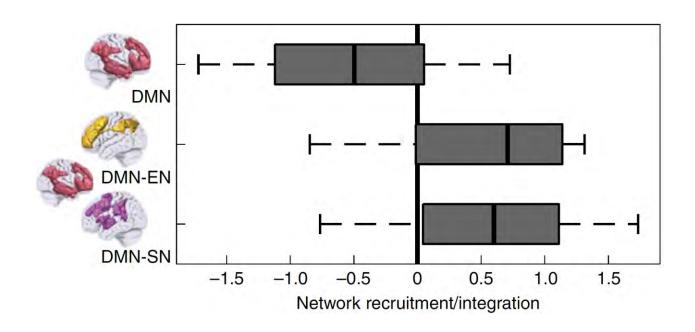
Psychedelics increase sensory but decrease integration processing


Self-dissolution with hallicunogenics

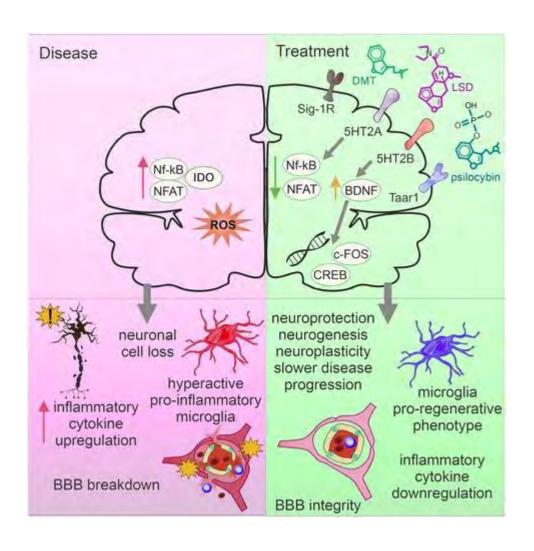
Psylocybin Magic mushrooms

Carhart-Harris 2014

Lysergic acid diethylamide LSD


Tagliazucchi 2016

Ayahuasca



Palhano-Fontes 2014

Psychedelics: DMN disintegrates but connects with CEN and SN

Psychedelics are anti-inflammatory

Macro vs microdosing

Plausible dose ranges for microdoses of various substances.

Compound	Typical recreational or therapeutic dose range	Intoxication threshold dose range	Plausible microdose dose range
Psilocybe cubensis dried mushroom: PO	3–5 g	0.5–1.5 g	0.1–0.5 g
Psilocybin synthetic: PO	17–30 mg ^a	3–8 mg ^b	0.8–5 mg ^c
Psilocybin synthetic: IV [#]	2 mg/70 kg – moderate dose ^d	1 mg ^e	0.5 mg ^e
LSD: PO	100-200 μg	20–25 μg ^f	6–20 μg ^g
DMT: IV [#]	14–28 mg/70 kg ^h	3.5 mg/70 kg	0.7–3.5 mg/70 kg
DMT: smoked	25 mg ¹	SET OUVE	8–9 mg
DMT: IM#	50-70 mg/70 kg	30 mg/70 kg ^k	6-25 mg/70 kg
Ibogaine synthetic: IV [#]	1000–2000 mg/70 kg (possibly starting at 200 mg/70 kg)	100–210 mg/70 kg ¹	20 mg/70 kg ^m

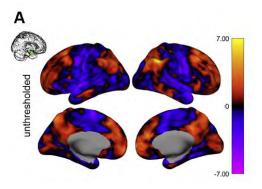
Note: PO, per oral; IV, intravenous; IM = intramuscular; LSD, lysergic acid diethylamide; # = depends on infusion rate.

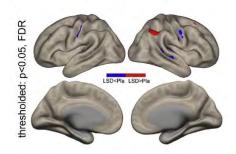
Current evidence for microdosing effects.

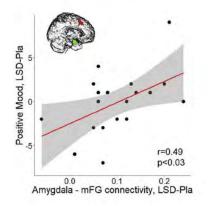
Effects found in both self-report and lab studies	Effects found in self-report studies but not well investigated in lab studies	Effects found in self-report studies; investigated but not confirmed in lab studies ^a
 Altered time perception Pain tolerance Changes in conscious state 	 Improved mental health Reduced substance use Increased absorption Reduced mind wandering Personality changes Insight Nature relatedness Wellbeing Improved creativity 	 Improved mood Social connection Improved cognition Enhanced emotional processing Increased energy

^a Note: Lab studies to date have investigated only acute effects. Sustained effects related to microdosing have not yet been explored in lab-based studies.

Microdosing LSD


Microdosing LSD changes FC amygdala (Bershad 2019)

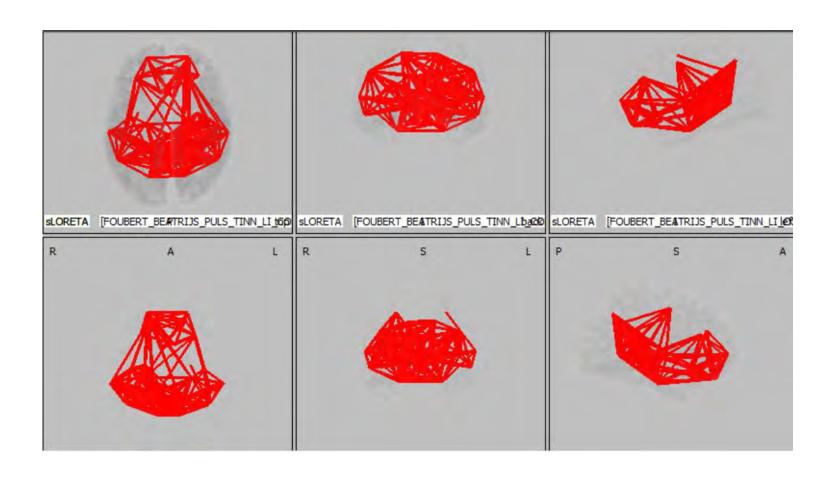

Increased to DMN and CEN (= synergy core)


Decreased to sensory and motor areas and SN

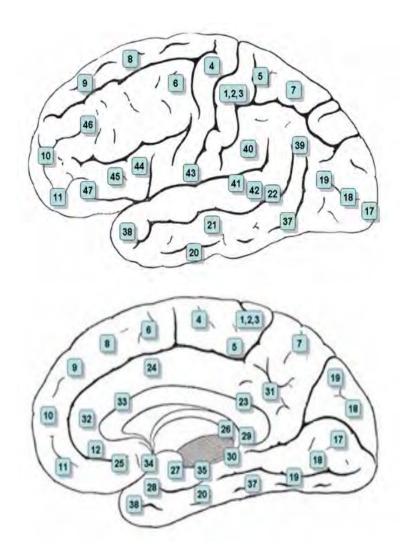
TPJ (DMN)

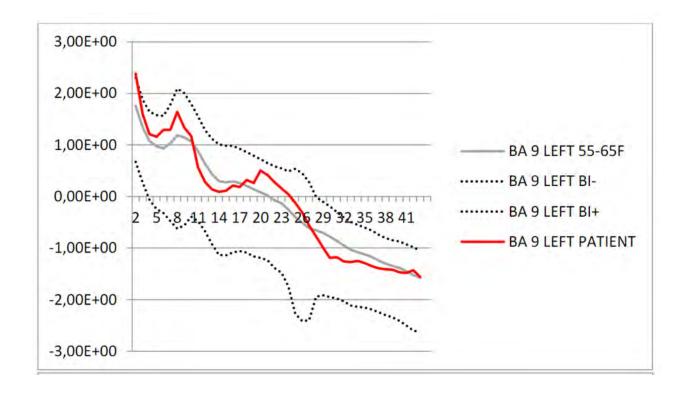
ACC/dmPFC related to mood

Placebo controlled

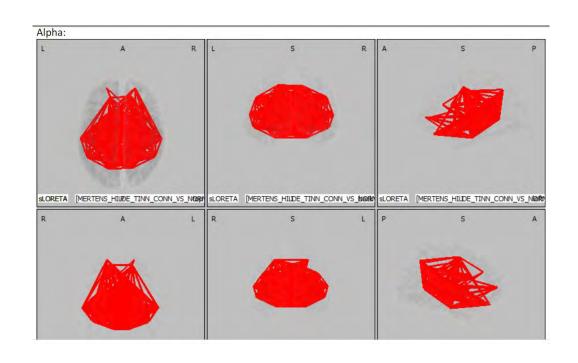

Exhausted brain

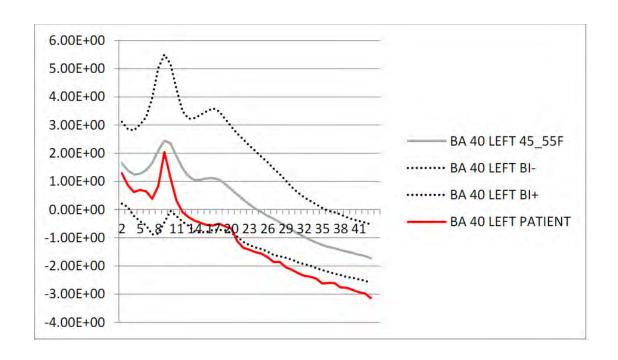
Phase 1: increased alpha connectivity

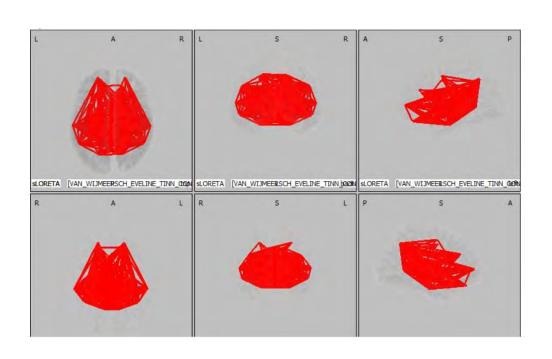

Phase 2: decrease in high frequency spectral power


Phase 3: low voltage spectrum

Increased alpha connectivity (vs norm group)




Normal spectral analysis



Low voltage for high frequencies in spectral analysis

Increased alpha connectivity (vs norm group) + generalized low voltage spectral analysis

Treatment

Phase 1: Force brain to rest

Chemical

Nervous system

Block dopamine (deanxit), noradrenaline (clonidine), glutamate (ketamine)

Increase serotonin (SSRI, aripiprazole, macrodosis psychedelics), endorphins (naltrexone)

Immunological

Anti-inflammatory (NAC, LDN,...)

Probiotics

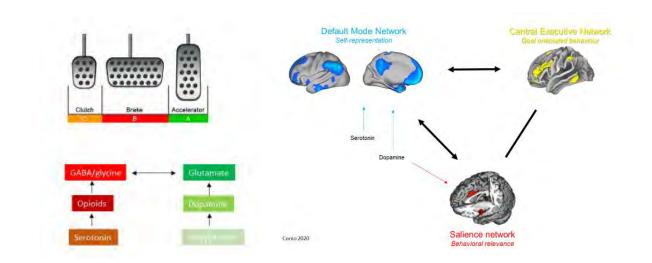
Hormonal?

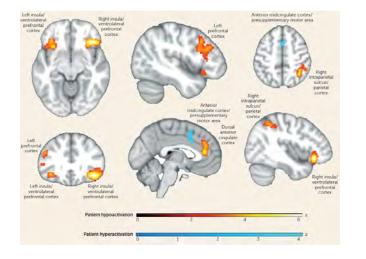
Electrical

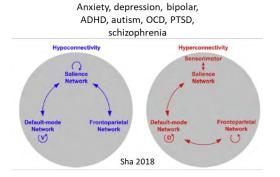
Activate left CEN: TMS 10 Hz left

Block SN: TMS 1 Hz

Phase 2: rebuild the brain


Chemical: wean medication/hormones (Thyroid) or low maintenance dose: microdosing


maintenance dose: microdosing Electrical: start neurofeedback


Strengthen DMN

Strengthen anticorrelation DMN-SN

Strengthen CEN

Conclusion

Neuromodulation
All techniques have same underlying principle
(TES, TMS, electrodes, neurofeedback)

Te Whare Wānanga o Otāgo

Neuromodulation changes activity of neurons & glia thereby changes functional and effective connectivity modulates neural networks functioning (eg efficiency) thereby changing the network's emergent function

Psychedelics
Change activity and functional connectivity
Modulating neural networks
Changing the networks emergent function

Chemical and electrical neuromodulation interact (strengthen or weaken)