

Te Whare Wananga o Otago

Physical & psychological pain The other side of the same coin?

Dirk De Ridder

Brain Research consortium for Advanced International Innovative & Interdisciplinary Neuromodulation

Why do we have a brain?

We have a brain because we need one

Move around Changing environment Change = uncertainty but **predictable**

Intentionality

Brains = prediction machines essential in navigation/movement using information from previous experiences (memory) to predict future events (intelligence) based on current context in relation to the self to reduce uncertainty important for survival and procreation i.e. for natural, social and sexual selection

Hierarchy of needs

Animals need to decide moment by moment which needs (goal to survive & procreate) to pursue, for which energy and time needs to be allocated (Gros 2018, Sutton 2020)

Each competing need is linked to a motivation to either **'do'** something or nothing

Activates the sympathetic (arousal, do) or parasympathetic (rest/digest/restore) nervous system

When a need requires action, it triggers an **increase in noradrenergic sensory gain** to find/sample the stimuli that are needed to fulfil the need

Each competing need has different dopaminergic motivational **salience**, i.e. propels an organism to or away from an object/stimulus

Whether an object/stimulus is good (pleasure) or **bad (suffering)** to reduce the need is determined by the **context**

Hierarchy of needs

Pain & Pleasure

- 1. Determine priority in hierarchy of needs
 - 2. Learn for the future

Philosophy of pleasure and pain

Epicurus (341-270 BC)

Pursuit of pleasure and abscence of pain is **purpose of life**, but without excesses (based on Plato and Aristotle) Ataraxia: peace and freedom from fear Aponia: the absence of pain

Bentham (1748-1832)

Utilitarianism: One has to maximize pleasure and minimize pain...

Not only purpose of life but also **mechanism of life in order to reduce uncertainty**

"Natu gover

"Nature has placed mankind under the governance of two sovereign masters, pain and pleasure."

Pleasure and pain as mechanism of life

Brain is constantly bombarded by simultaneous stimuli (Seeley 2005)

Salient environmental events should be processed with priority (Dolan 2002, Seeley 2005, Fecteau 2006).

Emotions create priority mode for attentional perceptual processing (Dolan 2002).

P(A/B)= P(A) <u>P(B/A)</u> (P/B)

Evolution of reward seeking (food, partner) and misery fleeing (predator) brain circuitry

Cambrian explosion (540 million years ago)(Loonen 2015) Lancelet fish (amphioxus, 530 M) has no true brain First brain* arises in hagfish and lamprey Hagfish (300M) and lamprey (360M) have basic feedback circuitry

1. Habenula

2. Striatum/accumbens

This motivation to seek reward and flee from misery/punishment permits organism to learn what is beneficial and harmful for survival and procreation

Requires only unmyelinated (C-) fibers in CNS and PNS

(
	Chordates lancelet	Craniates hagfish	Vertebrates lamprey	Amphibians frog	Reptiles tortoise	Mammals opossum	Primates rhesus monkey
	1		There	-	-	-	-
Notochord*	•	Đ	÷	÷	÷	÷	•
Spinal cord		÷			+	÷	•
Separate brain		÷		•	•	÷	+
Separate endbrain		+/-	÷		÷	÷	÷
Olfactory bulb		÷	÷	÷	÷	÷	÷
Infundibulum	÷	Ð	÷	•	÷	÷	÷
Cerebellum				+	÷	÷	÷
Habenula		÷	÷	÷	÷	•	÷
Striatum **		÷	÷	÷	•	•	÷
Amygdala***				÷	÷	÷	÷
Hippocampus****		+/-	+/-	0	•	•	
Isocortex			+/-	÷	÷	+	÷

unmyelinated + myelinated

unmyelinated

Habenula: suffering

de Bellard 2016

* Brain subserves entire body, bilobar, specialized parts, multisynaptic (Sarnat 2002)

• Loonen 2015

Emotion

Anticorrelated Anticorrelated Anticorrelated Switch Corteated Corteated	Cognition
	Conductor
	Emotion

Pain

Definition

Pain = as an unpleasant **sensory** and **emotional** experience associated with actual or potential **tissue damage** ...(Bonica 1979)

Acute Pain

Acute pain depends on context and intention/goal

Battle front (Beecher 1956)

- No relationship between the extent of the injury (= stimulus intensity) and experienced pain in wounded soldiers evacuated from the frontline
- Intensity of the suffering is largely determined by the salience of the pain in this specific context

SM (Kamping 2016)

Pain is perceived pleasant only in erotic context

Sports

"If I feel no pain I have not trained hard enough"

The Price, Tom Lea (1944)

Conclusions

Tissue damage ≠ pain

Pain ≠ suffering

Pain can be pleasant

Pain and suffering are generated in the brain

Brain = complex adaptive system

Complex adaptive systems (CAS)

Arise when 2 conditions are fulfilled (Amaral 2004)

- 1. Structure has small world topology
- 2. Presence of noise (= variability)

Brain = complex adaptive system

Complex adaptive systems (CAS)

are characterized by

- 1. Complex : containing many parts in intricate arrangement
- 2. Adaptive: capacity to change and learn from experience giving them resilience in the face of perturbation (homeostasis)
- 3. Self-organization : complexity of the system increases without external organizer

Adding energy to matter results in overcoming 2nd law of thermodynamics and permits selective forces to work on it (Whitfield 2007)

- 4. Self-similarity: the whole has the same shape as one or more of the parts (fractal)
- 5. Emergence : whole is more than sum of components, new property

Interactions create emergence

Emergence

Each pattern has emergent characteristic

Anatomy of pain and suffering

Meta-analysis conjunction pain and suffering

Meta-analysis subtraction pain and suffering

Meta-analysis: combination conjunction & subtraction

Summary

Global pain

BIL INS/ IFG

Suffering = rdACC + insula

Catastrophizing = insula

Stress = rdACC + insula

Unpleasantness = rdACC

Republiel of ALC:

Mathur 2016

Kogler 2015

Vachon-Presseau 2013

Chronic pain & suffering

Suffering

= unpleasant experience associated with negative cognitive, emotional and autonomic reaction

(De Ridder 2021)

Raymaekers 2022

Cognitive component of pain (rumination, attention,...)

Perceptual component of pain (Painfulness)

Emotional component of pain (Fear, anger, frustration, unpleasantness)

Integrating pain in self saves energy

Chronic pain consumes less energy than acute pain (Straub 2017) Sympathetic NS activation can increase energy expenditure by 15-35% (Sjostrom 1983, Fellows 1985, Matthews 1990, Ratheiser 1998)

Allostasis is energy saving mechanism (Kleckner 2017)

Table 2 | Activities causing a non-volitional increase in daily energy expenditure

Non-volitional activity	Extra energy costs*	Refs
Inflammation	25-60%*	1,57
Chronic low-grade infection [§]	10%	11
Acute pain	up to 60%	66
Chronic pain	15%	68
Psychological stress	up to 30%	63,69,70
Sleep alterations	up to 30%	72-74
Anxiety	up to 10%	75
Heavy smoking	up to 15%	64

*Extra energy costs are relative to total energy costs in healthy individuals, and are given as a percentage of the basal or total energy expenditure, ‡Range spans mild activation to sepsis. §Such as hepatitis C infection.

Default Mode Network

Somatosensory cortex

ADHD, anxiety, depression, bipolar, autism, OCD, PTSD, schizophrenia

SN and DMN fall apart SN disconnects from DMN and CEN precuneus and dMPFC hyperconnect to insula, DLPFC and somatosensory
More psychological pain in society

Covid related psychological impact: esp younger people

Population	<u>Stress</u>	<u>Anxiety</u>	Depression	<u>Sleep</u>	<u>Reference</u>
College students Pregnant	23%	29%	37%		Wang 2021
women	56%	33%	27%		Demissie 2021
Health care workers	29%	34%	31%	36%	Sahebi 2021
General population	36%	27%	28%	27%	Nochaiwong 2021
		6.6%	5.4%		
Pre-covid		12.9% lifetim	e 9.6% lifetime		Steel 2014

NEARLY 1 IN 5 ADULTS (19%) SAY THEIR MENTAL HEALTH IS WORSE THAN THIS TIME LAST YEAR

BY GENERATION

Treatment implications

Medial pathway

- 1. Pain killers (paracetamol, ibuprofen)
- 2. Oxytocin
- 3. Meditation
- 4. Yoga
- 5. Cingulotomy
- 6. Cingulum implants
- 7. TMS/tDCS
- 8. Burst spinal cord stimulation
- 9. Acupuncture

Lateral pathway

- 1. Aspirin
- 2. Gabapentin
- 3. Tonic spinal cord stimulation
- 4. Somatosensory cortex stimulation
- 5. Acupuncture

Descending pain inhibitory pathway

- 1. Psychopharmacology (SNRI)
- 2. Opioids
- 3. Testosteron
- 4. Placebo
- 5. Psychotherapy
- 6. Psychosurgery
- 7. TMS/tDCS
- 8. Spinal cord stimulation
- 9. Motor cortex stimulation
- 10. Exercise therapy
- 11. Acupuncture

Psychotherapy

Efficacy of psychotherapy

3,782 RCTs and 650,514 patients (Leichsenring 2022)

MDD, anxiety, PTSD, OCD, somatoform disorders, eating disorders, ADHD, SUD, insomnia, schizophrenia spectrum disorders, and bipolar disorder.

Small effect sizes (Standard Mean Difference) (Leichsenring 2022)

0.34 SMD for psychotherapy > control

NNT for psychotherapy is 7.4 (Schefft 2019)

NNT	Cohen's d ^a	Effect size
1	-	Perfect ^b
2.3	0.8	Large
3.6	0.5	Medium
9.0	0.2	Small

Sullivan2021

Efficacy of psychotherapy (meta-analyses)

Is psychotherapy efficacious?(Wampold, meta-analysis 2001)

- 0.34 effect size (small to medium) (Leichsenring 2022)
- 7.4 = NNT for psychotherapy (Schefft 2019)
- 87% of therapeutic effect is unrelated to therapy (Wampold 2001)
- 1% of therapeutic success depends on type of psychotherapy (Wampold 2001)

What does matter in psychotherapy? Patients cure themselves (Sparks 2007)

Is the therapist important?

Experienced psychotherapists and untrained paraprofessionals have same outcome (Berman 1985, meta-analysis, n=32) 6% depends on psychotherapist (Crits-Christoph 1991)

Is the patient important?

40% depends on patient characteristics (Asay 1999) 15% improve before first consultation, decision to seek help (Howard 1986) 15% relates to hope, expectation (Asay 1999)

Is the patient – psychotherapist alliance important?

7-50% depends on therapeutic alliance (Wamplod 2001, Horvath 2001)

If no benefit by 3rd consultation, no benefit will follow (Brown 1999)

Conclusion: Patients cure themselves, psychotherapists create context (Sparks 2007)

Medication

Paracetamol can treat psychological pain

Day

dACC (9, 27, 21)

Psychopharmacology can treat painfulness

Opioid crisis

COLE Priseyeen Post-enzent

*Among deaths with drug overdose as the underlying cause, the "any opioid" subcategory was determined by the following ICD-10 multiple cause-of-death codes: natural and semi-synthetic opioids (140.2), methadone (140.3), other synthetic opioids (other than methadone) (140.4), or heroin (140.1). Source: Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause of Death 1999-2021 on CDC WONDER Online Database, released 1/2023.

Shokri-Kojori 2021

Efficacy psychopharmacology

3,782 RCTs and 650,514 patients (Leichsenring 2022)

MDD, anxiety, PTSD, OCD, somatoform disorders, eating disorders, ADHD, SUD, insomnia, schizophrenia spectrum disorders, and bipolar disorder.

Small effect sizes (Standard Mean Difference) (Leichsenring 2022)

0.36 SMD for pharmacology > placebo

NNT for SSRI and TCA is 7 and 9 (Arroll 2009)

NNT	Cohen's d ^a	Effect size
1	-	Perfect ^b
2.3	0.8	Large
3.6	0.5	Medium
9.0	0.2	Small

Sullivan2021

Augmentation for treatment resistant depression

Antidepressants in >65

Antidepressants for MDD >65 yo (Tham 2016)

No better than placebo for response or remission Better for prevention relapse

	SSF	શ	Place	bo		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Kasper (Escitalopram)	78	170	85	180	33.7%	0.95 [0.62, 1.44]	
Kasper (Fluoxetine)	61	164	85	180	32.0%	0.66 [0.43, 1.02]	
Roose (Citalopram)	34	84	34	90	16.0%	1.12 [0.61, 2.06]	
Schatzberg (Fluoxetine)	39	99	40	96	18.2%	0.91 [0.51, 1.61]	
Total (95% CI)		517		546	100.0%	0.86 [0.67, 1.10]	•
Total events	212		244				
Heterogeneity: Tau ² = 0.0	0; Chi ² = 3	2.38, df	= 3 (P =	0.50); P	= 0%		the star of the start of
Test for overall effect: Z =	1.20 (P =	0.23)					Favours placebo Favours SSRI

.2. Response to acute treatment with SSRIs versus a placebo in elderly subjects, aged 65 years and older, with depressive disorder: Odds Ratio.

	SSF	8	Place	ho		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% C	1	_
Kasper (Escitalopram)	78	170	85	180	33.7%	0.95 [0.62, 1.44]				
Kasper (Fluoxetine)	61	164	85	180	32.0%	0.66 [0.43, 1.02]		-		
Roose (Citalopram)	34	84	34	90	16.0%	1.12 [0.61, 2.06]				
Schatzberg (Fluoxetine)	39	99	40	96	18.2%	0.91 [0.51, 1.61]				
Total (95% CI)		517		546	100.0%	0.86 [0.67, 1.10]		•		
Total events	212		244							
Heterogeneity: Tau ² = 0.0	0; Chi ² = 1	2.38, df	= 3 (P=)	0.50); P	= 0%		L			1
Test for overall effect: Z =	1.20 (P =	0.23)					0.1 0.2 Fa	U.5 1 2 vours placebo Favours :	SSRI	10

I. Remission after acute treatment with SSRIs versus a placebo in elderly subjects, aged 65 years and older, with depressive disorder: Odds Ratio.

Fig. 4. Relapse in depressive disorder after maintenance treatment with SSRIs or a placebo for up to one year: Odds Ratio.

'Neuropharma problem'

Old CNS drugs are dirty drugs:

act on many different receptors, i.e. different networks found by serendipity or modification of known drugs

New CNS drugs are very specific

Paul Ehrlich's magic bullet (selective for 1 target) is problem (Prior 2014)

Big pharma not interested in drug development for CNS disorders

Since 2011 GSK, AstraZeneca and Novartis have announced closures of neuroscience divisions globally.

Pfizer, Sanofi, Janssen and Merck have begun to significantly downsize CNS operations (Pfizer stopped AD in 2017)

Developing medication for CNS has

50% less chance of making market (6.2% vs 13.3%)(Gribkoff 2017) Takes 30% longer (19.3 vs 14.7 months) (Gribkoff 2017) Cost 30% more than heart medication

50% less medication developed for brain related diseases

Too expensive

Recent Failures: 4/5 medications fail phase III trials (Kesselheim 2015) Most because no better than placebo (46%)

_	<u>Site</u>	Value (µM)	Туре	Action
-	NMDA (PCP)	0.25–0.66 0.35	K _i IC ₅₀	Antagoni
1	GABAA	IA	ND	ND
-	MOR	26-42.1	K	Antagoni
	MOR ₂	12.1	Ki	Antagonis
	DOR	66.0-272	K	ND
	KOR	28.1-85.2	K	ND
and it	NOP	IA	ND	ND
HCI	<u> </u>	66.0-140	K	Agonist
	<u><u>σ</u>₂</u>	26.3	K	Agonist?
nL* (50.00	<u>D</u> 2	>10	K	ND
an income of	<u>D₂High</u>	0.5 1.03	K _i EC ₅₀	Agonist
-	<u>5-HT_{2A}</u>	>10	K	ND
	<u>5-HT_{2A}Hi</u>	≥15	K	Agonist?
	<u>5-HT₃</u>	96.9	K	Potentiat
	<u>M</u> 1	45	Ki	Antagoni
	<u>M</u> 2	294	K	Antagoni
	<u>M</u> 3	246	K	Antagoni
	<u>α7</u>	20	IC ₅₀	Antagoni
	<u>α4β2</u>	50	IC ₅₀	Antagoni
	ΕRα	0.345 2.31	K _D IC ₅₀	ND
	ChE	494	K	Inhibitor
	<u>SERT</u>	>10 162 >10	K _i K _i IC ₅₀	Inhibitor
	<u>NET</u>	66.8 >10	K _i IC ₅₀	Inhibitor
		. 10	IZ .	

62.9

>10

59.4

mΜ

209

8-16

DAT

PCP₂

VGSC

VDCC

HCN1

Ketamine

Ref

[89][90

[4][91] [92]

[4][91] [4][91]

[91]

[93][88][90

[93][90] [90][94]

[95][96]

[97]

[90]

[95][98]

[99][100]

[4][101]

[4][101] [4][101]

[4]

[4]

[102]

[102]

[90]

[94] [103][104][5

[94]

[90]

[94]

[103][10

<u>[89]</u> [88]

Species

Human

Human

Various

Various

Human

Human

Human

Humar

Mouse

Human Human

Human

Humar

Humai

Human

Human

Huma Rat

Huma

Humar

Human

Humai

Humar

Huma

Rat

Inhibito

Inhibito

Rat

Rat

Rat Rat

ND Various

EC

Neuromodulation to the rescue

Neuropharma

Program	2009	2014	Percent Decrease
BMS	12	2	83.3%
Merck	32	7	78.1%
Pfizer/Wyeth	46	15	67.4%
AZ	21	7	66.7%
GSK	40	14	65.0%
Sanofi/Genzyme	29	12	58.6%
Lilly	16	9	43.8%
Abbott/Abbvie	17	10	41.2%
181	18	17	5.6%
Roche/Genentech	22	21	4.5%
Novartis	14	15	-7.1%
Total	267	129	51.7%

50% decline in pharma investment Yokley 2016

Neuromodulation devices

Market Research Report 2016

TENS

tDCS tACS tES tRNS

Neurofeedback

ECT

Target medial suffering pathway directly: non-invasive approach

Real TMS vs sham TMS

Only difference is in beta2 ACC

tES (tDCS-tRNS-tACS)

			in al	†	3 3 6				Effect size	d	Referen
				TACS MANAAAA	- ×				Very small	0.01	[10]
					+				Small	0.20	[9]
CS for mental di	sor	ders							Medium	0.50	[9]
			Large effect s	ize	of modication (0.26) or paus	hatharany (0.2	۸)	Large	0.80	[9]
			Aimost triple	enect size	of medication (0.36) of psyc	notherapy (0.3	4)	Very large	1.20	[10]
CS									Huge	2.0	[10]
Depression	9	419	-0.87 (-1.51 to -0.24)	2.70	0.007	67.89	<0.001	88	Hugo	2.0	
Unipolar	5	148	-1.04 (-2.17 to 0.08)	1.82	0.069	40.39	<0.001	90			
GAD	2	42	-0.55 (-1.17 to 0.07)	1.74	0.083	0.55	0.457	0			
OCD	2	46	-0.37 (-0.95 to 0.22)	1.23	0.218	0.003	0.953	0			
Schizophrenia											
Positive symptoms	8	367	-0.12 (-0.33 to 0.08)	1.18	0.237	3.59	0.826	0			
Negative symptoms	7	267	-0.54 (-0.95 to -0.14)	2.61	0.009	14.98	0.020	60			
Total symptoms	9	386	-0.63 (-1.03 to -0.23)	3.10	0.002	26.14	0.001	69			
Auditory hallucinations	7	312	-0.42 (-0.81 to -0.02)	2.06	0.040	16.50	0.011	64			
SUD	7	224	-0.73 (-1.00	5.29	<0.001	2.95	0.815	0			

NNT for depression is 7 (Brunoni 2018) vs 3.4 for rTMS (Liu 2014) 7 for medication and psychotherapy

rTN/S in	montal disorde	arc									Effect size	d	Reference
		213									Very small	0.01	[10]
				Large to v	ery effe	ct size				(0	Small	0.20	[9]
-				2 to 5 time	es effect	size of med	dication ((Heterog	0.36) or psy eneity	/chotr	erapy (0 Egger's	.34) Medium	0.50	[9]
		к	N	SMD (95% CM	z	p values	Q	p values	l ²	t	Large	0.80	[9]
	Core symptom severity										Very large	1.20	[10]
CARA L	TMS			/ //							Huge	2.0	[10]
ALA	ADHD	2	51	-0.50 (-135 to 0.33)	1.18	0.237	2.11	0.146	52			1	
	Depression	76	3366	-0.45/(-0.57 to -0.33)//	7.16	<0.001	197.91	<0.001	62	1.95	0.055		
	Unipolar	42	2336	-0.60 (-0.78 to -0.42)	6.45	<0.001	154.91	<0.001	74	2.85	0.007		
	Bipolar	4	145	-0.20 -0.52 to 0.11)	1.26	0.209	1.84	0.606	0				
	GAD	3	111	-1.80 (-2.60 to -1.00)	4.40	<0.001	5.37	0.068	63				
	OCD	26	760	-0.66 (-0.91 to -0.41)	5.10	<0.001	72.18	<0.001	65	3.31	0.003		
	PTSD	10	255	-1.09 (-1.61 to -0.57)	4.10	<0.001	42.44	<0.001	79	0.59	0.572		
	Schizophrenia												
	Positive symptoms	33	1474	-0.11 (-0.33 to 0.11)	0.96	0.338	153.20	<0.001	77	2.27	0.029		
	Negative symptoms	31	1266	-0.49 (-0.73 to -0.26)	4.07	<0.001	133.98	<0.001	78	2.45	0.020		
	Total symptoms	29	1334	-0.50 (-0.66 to -0.33)	5.81	<0.001	58.67	<0.001	52	2.42	0.022		
	Auditory hallucinations	16	545	-0.19 (-0.36 to -0.02)	2.19	0.029	12.62	0.632	0	2.64	0.020		
	SUD	4	100	-1.46 (-3.35 to 0.42)	1.52	0.128	49.44	<0.001	92				

NNT for depression is 3.4 (Liu 2014) vs 7 for medication and psychotherapy

Brain surgery

Surgical treatment of suffering

Same outcome for OCD (Hageman 2021, meta-analysis)

Techniques

Lesioning

Only two remain

Anterior Cingulotomy (dACC) Anterior Capsulotomy

Cingulotomy

No change in personality, general intelligence, memory or executive function (Christmas 2006) Reduces response intention and focused attention (Cohen 1999)

Capsulotomy

Problems with executive functioning, apathy, or disinhibition. Weight gain (Rück 2008)

Same targets are used for DBS

- 1. dACC (n=3)
- 2. Anterior capsula (OCD)
- 3. + Nucleus accumbens
- 4. + subgenual/pregenual ACC

5. + VNS

Greenberg 2010

Psychosurgery for suffering (meta-analysis)

Psychosurgery has a large effect size for improvements in

- 1. depression (g=1.27; p<0.0001),
- 2. obsessive–compulsive symptoms (g=2.25; p<0.0001)
- 3. anxiety (g=1.76; p<0.0001)

The pooled clinical global impression improvement score = 2.36 (p<0.0001)

clinical global impression – improvement scale (CGI-I)

- 1. Very much improved
- 2. Much improved
- 3. Minimally improved
- 4. No change
- 5. Minimally worse
- 6. Much worse
- 7. Very much worse

What about the future?

- 1. Spinal cord stimulation
- 2. Psychedelics + neuromodulation

Spinal cord stimulation for suffering

Concept = simple = normalize imbalance

Tonic spinal cord stimulation

Benchmark: Meta-analysis for Tonic SCS for limb pain

Pain suppression is 58% (Taylor 2013)

Study ID	Percentage (95% Ci)
Study	Percentage (95% C) 100.00 (69.15, 100.00) 96.67 (55.34, 98.34) 45.45 (16.75, 75.62) 70.00 (45.72, 88.11) 55.00 (38.49, 70.74) 67.00 (22.28, 95.67) 91.30 (71.96, 66.33) 52.94 (27.81, 17.02) 52.94 (27.81, 17.02) 52.55 (15.08, 43.50) 70.10 (54.48, 43.30) 70.10 (54.48, 43.30) 71.10 (54.48, 43.30) 71.10 (54.48, 43.30) 71.10 (54.74, 83.10) 57.14 (39.35, 73.68) 92.00 (05.1, 71.64) 72.55 (53.75, 81.34) 52.55 (53.08, 25.51) 52.55 (53.08, 25.54) 52.55 (53.75, 81.34) 52.55 (53.75, 81.34) 52.55 (53.75, 81.34) 52.55 (53.75, 81.34) 52.55 (53.75, 81.34) 52.55 (53.75, 75.35) 53.71 (28.86, 26.34) 70.92 (63.87, 75.35) 16.33 (7.32, 29.66) 10.33 (74.22, 29.66) 10.33 (74.22, 29.66) 10.33 (74.22, 29.66) 10.33 (73.13, 53.54) 59.26 (45.03, 72.45) 59.26 (45.03, 72.45) 59
North (197775) North (1991a) North (1991b) North (2005a) North (2005b) North (2005b) North (2005b) Impact (1975)	75.00 (53.29, 90.23) 52.00 (37.42, 66.34) 40.00 (33.66, 62.58) 37.50 (16.80, 55.41) 33.33 (16.53, 55.32) 92.31 (63.37, 99.81) 46.43 (32.99, 60.26)
Probel (1996) Rainov (1996) Ray (1975) Ray (1975) Ray (2009) Ray (2009) Qears (2011) Gears (2	 63.39 (53.76, 72.29) 82.21 (63.34, 96.11) 48.47 (41.29, 55.70) 50.77 (38.07, 63.40) 100.00 (54.07, 100.00) 29.40 (10.30, 55.90) 64.71 (46.49, 80.25)
Shāth (1966) Sheldon (1975) Slegteid (1962) Simption (1969) Sjelgeimann (1991) Tumer (2010) Van der Kleft (1994)	70.00 (59.43, 79.21) 66.67 (9.43, 99.16) 37.08 (27.07, 47.97) 57.14 (18.41, 90.10) 41.67 (15.17, 72.33) 51.16 (35.46, 66.69) 67.31 (52.89, 79.67)
Vogel (1985) Vonhogen (2011) Walktrod (1985) Overall (I-squared = 84.6%, p = 0.000)	50.00 (15.70, 84.30) 50.00 (27.20, 72.80) 75.00 (47.62, 92.73) 58.43 (53.25, 63.62)
NOTE: Weights are from random effects analysis	I I 75 100

Pain reduction is 3 VAS (Taylor 2013)

8

Long standing pain is less suppressed

TABLE 3. Calculated MCID values for outcome instruments

_	MCID Computation Method	NRS	ODI	BDI	PCS	MPQ
5	Average change method	2.4	6.9	3.8	8.3	2.3
	MDC approach	0.9	3.8	5	1.9	1
	Change difference calculation	2.7	5.4	5.9	13.6	2.2
	ROC curve (AUC) analysis	1 (0.78)	3.5 (0.71)	2 (0.57)	3 (0.77)	1 (0.74)

Sabourin 2021

Tonic stimulation in fMRI

Especially thalamus (GABAergic, Moens 2012) &SSC, but also little in insula caudate, PHC, hypothalamus

Rostral anterior cingulate cortex ~ pain relief (R²= 0.13201)

Moens 2012

Tonic & burst: common anti-nociceptive mechanism?

Both lateral and descending pathways modulated by tonic and burst stimulation

BurstDR[™] Stimulation differs from tonic stimulation

Rainville 1997

De Ridder 2013

Yearwood 2018

Vanneste, unpublished

BurstDR[™] improves **suffering**

BurstDR[™] improves **painfulness**, **suffering** and **quality of life/disability**

BurstDR[™] stimulation for suffering without physical pain?

Quindlen-Hotek 2020

Psychedelics + neuromodulation

War on pain and suffering

Psychedelics & neuromodulation

Concept:

Disrupt abnormal connectivity associated with psychiatric disorder

&

Rebuild with neuromodulation (rTMS, tES or neurofeedback)

Concept

tDCS + psilocybin = complimentary

Why HD-tES?

Two reasons

- 1. More focal stimulation (Edwards 2013, Ester 2021)
- 2. Multitarget = network stimulation (Ruffini 2014)

Active montage

11 electrodes Total injected current (uA): 3797 uA Maximum current any electrode (uA): 1399 uA

Fitness function (ERNI): -4137.005 mV^2/m^2 (98%) WCC: 0.283 (98%)

C1: -452 uA	Idv	W 5	<pre>cpE></pre>	()/m)
CP3: 511 uA	TUX	W5		(v/m)
CP4· 869 IIA	1	17	0.010	
F5· -432 μΔ	2	10	0.021	
F8: -1231 µA	3	15	0.018	0.013
FC1: -328 uA	4	15	0.012	
FC3: -513 uA	5	17	0.003	
FP2: 1399 uA	6	6	-0.038	
P3: 328 uA	7	6	-0.032	
P7: -841 uA	8	7	-0.024	-0.024
T7: 690 uA	9	9	-0.013	
	10	19	-0.007	
FC3: -513 uA F P2: 1399 uA P3: 328 uA P7: -841 uA T7: 690 uA	5 6 7 8 9 10	17 6 7 9 19	0.003 -0.038 -0.032 -0.024 -0.013 -0.007	-0.024

C1: -452 uA CP3: 511 uA

Active montage: pink noise

WHO-5

No early improvement in delayed start = placebo Improvement in active early phase, no floor effect

0

WHO-5

Hamilton Anxiety and Depression Scale

HADS

0-7	no anxiety, no depression
8–10	Mild
11–14	Moderate
15–21	Severe

MCID (+/- 1.5-2 points) (Lemay 2018, 2019)

Measure	Within-Patients	Between-Patients
Anxiety	1.67	1.29
Depression	1.85	1.21

HADS

0-7 no anxiety, no depression

8–10	Mild
11–14	Moderate
15–21	Severe

MCID (+/- 1.5) (Lemay 2018, 2019)

Measure	Within-Patients	Between-Patients
Anxiety	1.67	1.29
Depression	1.85	1.21

HADS_Depression

No early improvement in delayed start = placebo Improvement in active early phase, no floor effect Microdosing + HD-tDCS is also complimentary

Pain and suffering

Pain = painfulness + suffering Overlapping brain circuits Treatment is multimodal Medication + neuromodulation + ...

Te Whare Wananga o Otago

Dirk.DeRidder@brai3n.com

Brain Research consortium for Advanced International Innovative & Interdisciplinary Neuromodulation